114 Surds, indices, and exponentials (Chapter 4)
2 Expand and simplify:
a (2x¡1)(2x+3) b (3x+ 2)(3x+5) c (5x¡2)(5x¡4)
d (2x+3)^2 e (3x¡1)^2 f (4x+7)^2
3 Expand and simplify:
a (x
1
(^2) + 2)(x
1
(^2) ¡2) b (2x+ 3)(2x¡3) c (x
1
(^2) +x¡
1
(^2) )(x
1
(^2) ¡x¡
1
(^2) )
d (x+
2
x
)^2 e (7x¡ 7 ¡x)^2 f (5¡ 2 ¡x)^2
g (x
2
(^3) +x
1
(^3) )^2 h (x
3
(^2) ¡x
1
(^2) )^2 i (2x
1
(^2) ¡x¡
1
(^2) )^2
FACTORISATION AND SIMPLIFICATION
Example 18 Self Tutor
Factorise: a 2 n+3+2n b 2 n+3+8 c 23 n+2^2 n
a 2 n+3+2n
=2n 23 +2n
=2n(2^3 +1)
=2n£ 9
b 2 n+3+8
=2n 23 +8
= 8(2n)+8
= 8(2n+1)
c 23 n+2^2 n
=2^2 n 2 n+2^2 n
=2^2 n(2n+1)
Example 19 Self Tutor
Factorise: a 4 x¡ 9 b 9 x+ 4(3x)+4
a 4 x¡ 9
=(2x)^2 ¡ 32 fcompare a^2 ¡b^2 =(a+b)(a¡b)g
=(2x+ 3)(2x¡3)
b 9 x+ 4(3x)+4
=(3x)^2 + 4(3x)+4 fcompare a^2 +4a+4g
=(3x+2)^2 fas a^2 +4a+4=(a+2)^2 g
EXERCISE 4E.2
1 Factorise:
a 52 x+5x b 3 n+2+3n c 7 n+7^3 n
d 5 n+1¡ 5 e 6 n+2¡ 6 f 4 n+2¡ 16
2 Factorise:
a 9 x¡ 4 b 4 x¡ 25 c 16 ¡ 9 x
d 25 ¡ 4 x e 9 x¡ 4 x f 4 x+ 6(2x)+9
g 9 x+ 10(3x)+25 h 4 x¡14(2x)+49 i 25 x¡4(5x)+4
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_04\114CamAdd_04.cdr Tuesday, 14 January 2014 2:28:29 PM BRIAN