Cambridge Additional Mathematics

(singke) #1
^
02
0 222 222

:
: ::::

means

138 Logarithms (Chapter 5)

6 If x= log 2 P, y= log 2 Q, and z= log 2 R, write in terms ofx,y, andz:

a log 2 (PR) b log 2 (RQ^2 ) c log 2

μ
PR
Q


d log 2 (P^2

p
Q) e log 2

μ
Q^3
p
R


f log 2

μ
R^2
p
Q
P^3


7 If p= logb 2 , q= logb 3 , and r= logb 5 , write in terms ofp,q, andr:
a logb 6 b logb 45 c logb 108

d logb

³
5
p
3
2

́
e logb

¡ 5
32

¢
f logb(0:2)

8 If logtM=1: 29 and logtN^2 =1: 72 , find:

a logtN b logt(MN) c logt

μ
N^2
p
M


9 Suppose logbP=5 and logb(P^3 Q^2 )=21. Find logbQ.

10 Suppose that logt(AB^3 )=15 and logt

μ
A^2
B


=9.

a Writetwoequations connecting logtA and logtB.
b Find the values of logtA and logtB.
c Find logt

¡
B^5

p
A

¢

d WriteBin terms oft.

We can use the laws of logarithms to write equations in a different form. This can be particularly useful if
an unknown appears as an exponent.
For the logarithmic function, for every value ofy, there is only one corresponding value ofx. We can
therefore take the logarithm of both sides of an equation without changing the solution. However, we can
only do this if both sides are positive.

Example 10 Self Tutor


Write these as logarithmic equations (in base 10 ):

a y=5£ 3 x b P=p^20
n

a y=5£ 3 x
) lgy=lg(5£ 3 x)
) lgy=lg5+lg3x
) lgy=lg5+xlg 3

b P=p^20
n

) lgP=lg

μ 20

n

1
2


) lgP=lg20¡lgn

1
2
) lgP=lg20¡^12 lgn

D Logarithmic equations

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_05\138CamAdd_05.cdr Tuesday, 21 January 2014 2:47:49 PM BRIAN

Free download pdf