GRAPHING
PACKAGE
Logarithms (Chapter 5) 147
Example 23 Self Tutor
Find algebraically the exact points of intersection of y=ex¡ 3 and y=1¡ 3 e¡x.
The functions meet where
ex¡3=1¡ 3 e¡x
) ex¡4+3e¡x=0
) e^2 x¡ 4 ex+3=0 fmultiplying each term byexg
) (ex¡1)(ex¡3) = 0
) ex=1or 3
) x=ln1or ln 3
) x=0or ln 3
When x=0, y=e^0 ¡3=¡ 2
When x=ln3, y=eln 3¡3=0
) the functions meet at (0,¡2) and at (ln 3,0).
9 Solve forx:
a e^2 x=2ex b ex=e¡x c e^2 x¡ 5 ex+6=0
d ex+2=3e¡x e 1+12e¡x=ex f ex+e¡x=3
10 Find algebraically the point(s) of intersection of:
a y=ex and y=e^2 x¡ 6 b y=2ex+1 and y=7¡ex
c y=3¡ex and y=5e¡x¡ 3
A logarithm in basebcan be written with a different basecusing thechange of base rule:
logba=
logca
logcb
for a,b,c> 0 and b,c 6 =1.
Proof: If logba=x, then bx=a
) logcbx= logca ftaking logarithms in basecg
) xlogcb= logca fpower law of logarithmsg
) x=
logca
logcb
) logba=
logca
logcb
We can use this rule to write logarithms in base 10 or basee. This is useful in helping us evaluate them on
our calculator.
G The change of base rule
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_05\147CamAdd_05.cdr Tuesday, 21 January 2014 2:49:58 PM BRIAN