162 Polynomials (Chapter 6)Azeroof a polynomial is a value of the variable which makes the polynomial equal to zero.
®is azeroof polynomial P(x) , P(®)=0.
Therootsof a polynomialequationare the solutions to the equation.
®is aroot(orsolution)ofP(x)=0, P(®)=0.
Therootsof P(x)=0are thezerosof P(x) and thex-intercepts of the graph of y=P(x).Consider P(x)=x^3 +2x^2 ¡ 3 x¡ 10
) P(2) = 2^3 + 2(2)^2 ¡3(2)¡ 10
=8+8¡ 6 ¡ 10
=0This tells us: ² 2 is a zero of x^3 +2x^2 ¡ 3 x¡ 10
² 2 is a root of x^3 +2x^2 ¡ 3 x¡10 = 0
² the graph of y=x^3 +2x^2 ¡ 3 x¡ 10 has thex-intercept 2.If P(x)=(x+ 1)(2x¡1)(x+2), then (x+1), (2x¡1), and (x+2)are itslinear factors.Likewise P(x)=(x+3)^2 (2x+3) has been factorised into 3 linear factors, one of which is repeated.x¡® is afactorof the polynomial P(x) , there exists a polynomial Q(x)
such that P(x)=(x¡®)Q(x).Example 7 Self Tutor
Find the zeros of:
a x^2 ¡ 6 x+2 b x^3 ¡ 5 xa We wish to findxsuch that
x^2 ¡ 6 x+2=0) x=6 §p
36 ¡4(1)(2)
2) x=
6 §p
28
2) x=
6 § 2p
7
2
) x=3§p
7
The zeros are 3 ¡p
7 and 3+p
7.b We wish to findxsuch that
x^3 ¡ 5 x=0
) x(x^2 ¡5) = 0
) x(x+p
5)(x¡p
5) = 0
) x=0or §p
5
The zeros are ¡p
5 , 0 , andp
5.B Zeros, roots, and factors
An equation has.
A polynomial has.roots
zeroscyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_06\162CamAdd_06.cdr Friday, 20 December 2013 12:59:42 PM BRIAN