Cambridge Additional Mathematics

(singke) #1
162 Polynomials (Chapter 6)

Azeroof a polynomial is a value of the variable which makes the polynomial equal to zero.
®is azeroof polynomial P(x) , P(®)=0.
Therootsof a polynomialequationare the solutions to the equation.
®is aroot(orsolution)ofP(x)=0, P(®)=0.
Therootsof P(x)=0are thezerosof P(x) and thex-intercepts of the graph of y=P(x).

Consider P(x)=x^3 +2x^2 ¡ 3 x¡ 10
) P(2) = 2^3 + 2(2)^2 ¡3(2)¡ 10
=8+8¡ 6 ¡ 10
=0

This tells us: ² 2 is a zero of x^3 +2x^2 ¡ 3 x¡ 10
² 2 is a root of x^3 +2x^2 ¡ 3 x¡10 = 0
² the graph of y=x^3 +2x^2 ¡ 3 x¡ 10 has thex-intercept 2.

If P(x)=(x+ 1)(2x¡1)(x+2), then (x+1), (2x¡1), and (x+2)are itslinear factors.

Likewise P(x)=(x+3)^2 (2x+3) has been factorised into 3 linear factors, one of which is repeated.

x¡® is afactorof the polynomial P(x) , there exists a polynomial Q(x)
such that P(x)=(x¡®)Q(x).

Example 7 Self Tutor


Find the zeros of:
a x^2 ¡ 6 x+2 b x^3 ¡ 5 x

a We wish to findxsuch that
x^2 ¡ 6 x+2=0

) x=

6 §

p
36 ¡4(1)(2)
2

) x=
6 §

p
28
2

) x=
6 § 2

p
7
2
) x=3§

p
7
The zeros are 3 ¡

p
7 and 3+

p
7.

b We wish to findxsuch that
x^3 ¡ 5 x=0
) x(x^2 ¡5) = 0
) x(x+

p
5)(x¡

p
5) = 0
) x=0or §

p
5
The zeros are ¡

p
5 , 0 , and

p
5.

B Zeros, roots, and factors

An equation has.
A polynomial has.

roots
zeros

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_06\162CamAdd_06.cdr Friday, 20 December 2013 12:59:42 PM BRIAN

Free download pdf