Cambridge Additional Mathematics

(singke) #1
Polynomials (Chapter 6) 165

Example 12 Self Tutor


Find constantsaandbif z^4 +9=(z^2 +az+ 3)(z^2 +bz+3) for allz.

z^4 +9=(z^2 +az+ 3)(z^2 +bz+3) for allz
) z^4 +9=z^4 +bz^3 +3z^2
+az^3 +abz^2 +3az
+3z^2 +3bz+9
) z^4 +9=z^4 +(a+b)z^3 +(ab+6)z^2 +(3a+3b)z+9 for allz

Equating coefficients gives

a+b=0 .... (1) fz^3 sg
ab+6=0 .... (2) fz^2 sg
3 a+3b=0 .... (3) fzsg

From (1) and (3) we see that b=¡a
) in (2), a(¡a)+6=0
) a^2 =6
) a=§

p
6 and so b= ̈

p
6

) a=

p
6 , b=¡

p
6 or a=¡

p
6 , b=

p
6

EXERCISE 6B.2


1 Find constantsa,b, andcgiven that:
a 2 x^2 +4x+5=ax^2 +[2b¡6]x+c for allx
b 2 x^3 ¡x^2 +6=(x¡1)^2 (2x+a)+bx+c for allx
c 6 x^3 ¡ 13 x^2 +7x+4=(3x+ 1)(ax^2 +bx+c) for allx.

2 Find constantsaandbif:
a z^4 +4=(z^2 +az+ 2)(z^2 +bz+2) for allz
b 2 z^4 +5z^3 +4z^2 +7z+6=(z^2 +az+ 2)(2z^2 +bz+3) for allz.

3aGiven that x^3 +9x^2 +11x¡21 = (x+ 3)(ax^2 +bx+c), find the values ofa,b, andc.
b Hence, fully factorise x^3 +9x^2 +11x¡ 21.

4aGiven that 4 x^3 +12x^2 +3x¡5=(2x¡1)(px^2 +qx+r), find the values ofp,q, andr.
b Hence, find the solutions to 4 x^3 +12x^2 +3x¡5=0.

5aGiven that 3 x^3 +10x^2 ¡ 7 x+4=(x+ 4)(ax^2 +bx+c), find the values ofa,b, andc.
b Hence, show that 3 x^3 +10x^2 ¡ 7 x+4 has only one real zero.
6 Suppose 3 x^3 +kx^2 ¡ 7 x¡2=(3x+ 2)(ax^2 +bx+c).
a Find the values ofa,b,c, andk.
b Hence, find the roots of 3 x^3 +kx^2 ¡ 7 x¡2=0.

7aFind real numbersaandbsuch that x^4 ¡ 4 x^2 +8x¡4=(x^2 +ax+ 2)(x^2 +bx¡2).
b Hence, find the real roots of x^4 +8x=4x^2 +4.

When simultaneously
solving more equations
than there are unknowns,
we must check that any
solutions fit equations.
If they do not, there are
.

all

no solutions

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_06\165CamAdd_06.cdr Friday, 20 December 2013 1:20:05 PM BRIAN

Free download pdf