Polynomials (Chapter 6) 165Example 12 Self Tutor
Find constantsaandbif z^4 +9=(z^2 +az+ 3)(z^2 +bz+3) for allz.z^4 +9=(z^2 +az+ 3)(z^2 +bz+3) for allz
) z^4 +9=z^4 +bz^3 +3z^2
+az^3 +abz^2 +3az
+3z^2 +3bz+9
) z^4 +9=z^4 +(a+b)z^3 +(ab+6)z^2 +(3a+3b)z+9 for allzEquating coefficients givesa+b=0 .... (1) fz^3 sg
ab+6=0 .... (2) fz^2 sg
3 a+3b=0 .... (3) fzsgFrom (1) and (3) we see that b=¡a
) in (2), a(¡a)+6=0
) a^2 =6
) a=§p
6 and so b= ̈p
6) a=p
6 , b=¡p
6 or a=¡p
6 , b=p
6EXERCISE 6B.2
1 Find constantsa,b, andcgiven that:
a 2 x^2 +4x+5=ax^2 +[2b¡6]x+c for allx
b 2 x^3 ¡x^2 +6=(x¡1)^2 (2x+a)+bx+c for allx
c 6 x^3 ¡ 13 x^2 +7x+4=(3x+ 1)(ax^2 +bx+c) for allx.2 Find constantsaandbif:
a z^4 +4=(z^2 +az+ 2)(z^2 +bz+2) for allz
b 2 z^4 +5z^3 +4z^2 +7z+6=(z^2 +az+ 2)(2z^2 +bz+3) for allz.3aGiven that x^3 +9x^2 +11x¡21 = (x+ 3)(ax^2 +bx+c), find the values ofa,b, andc.
b Hence, fully factorise x^3 +9x^2 +11x¡ 21.4aGiven that 4 x^3 +12x^2 +3x¡5=(2x¡1)(px^2 +qx+r), find the values ofp,q, andr.
b Hence, find the solutions to 4 x^3 +12x^2 +3x¡5=0.5aGiven that 3 x^3 +10x^2 ¡ 7 x+4=(x+ 4)(ax^2 +bx+c), find the values ofa,b, andc.
b Hence, show that 3 x^3 +10x^2 ¡ 7 x+4 has only one real zero.
6 Suppose 3 x^3 +kx^2 ¡ 7 x¡2=(3x+ 2)(ax^2 +bx+c).
a Find the values ofa,b,c, andk.
b Hence, find the roots of 3 x^3 +kx^2 ¡ 7 x¡2=0.7aFind real numbersaandbsuch that x^4 ¡ 4 x^2 +8x¡4=(x^2 +ax+ 2)(x^2 +bx¡2).
b Hence, find the real roots of x^4 +8x=4x^2 +4.When simultaneously
solving more equations
than there are unknowns,
we must check that any
solutions fit equations.
If they do not, there are
.allno solutions4037 Cambridge
cyan magenta yellow black Additional Mathematics(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_06\165CamAdd_06.cdr Friday, 20 December 2013 1:20:05 PM BRIAN