166 Polynomials (Chapter 6)
Example 13 Self Tutor
x+3is a factor of P(x)=x^3 +ax^2 ¡ 7 x+6. Find a 2 R and the other factors.
Since x+3is a factor, The coefficient of
x^3 is 1 £1=1
This must be 2 so the
constant term is 3 £2=6
x^3 +ax^2 ¡ 7 x+6=(x+ 3)(x^2 +bx+2) for some constantb
=x^3 +bx^2 +2x
+3x^2 +3bx+6
=x^3 +(b+3)x^2 +(3b+2)x+6
Equating coefficients gives 3 b+2=¡ 7 and a=b+3
) b=¡ 3 and a=0
) P(x)=(x+ 3)(x^2 ¡ 3 x+2)
=(x+ 3)(x¡1)(x¡2)
The other factors are (x¡1) and (x¡2).
8
Example 14 Self Tutor
2 x+3and x¡ 1 are factors of 2 x^4 +ax^3 ¡ 3 x^2 +bx+3.
Find constantsaandband all zeros of the polynomial.
Since 2 x+3and x¡ 1 are factors, The coefficient ofx^4
is 2 £ 1 £1=2
This must be¡ 1 so the constant
term is 3 £¡ 1 £¡1=3
2 x^4 +ax^3 ¡ 3 x^2 +bx+3=(2x+ 3)(x¡1)(x^2 +cx¡1) for somec
=(2x^2 +x¡3)(x^2 +cx¡1)
=2x^4 +2cx^3 ¡ 2 x^2
+ x^3 +cx^2 ¡ x
¡ 3 x^2 ¡ 3 cx+3
=2x^4 +(2c+1)x^3 +(c¡5)x^2 +(¡ 1 ¡ 3 c)x+3
Equating coefficients gives 2 c+1=a, c¡5=¡ 3 , and ¡ 1 ¡ 3 c=b
) c=2
) a=5and b=¡ 7
) P(x)=(2x+ 3)(x¡1)(x^2 +2x¡1)
Now x^2 +2x¡ 1 has zeros
¡ 2 §
p
4 ¡4(1)(¡1)
2
=¡^2 §^2
p
2
2
=¡ 1 §
p
2
) P(x) has zeros ¡^32 , 1 , and ¡ 1 §
p
2.
2 x¡ 3 is a factor of 2 x^3 +3x^2 +ax+3. Find a 2 R and all zeros of the cubic.
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_06\166CamAdd_06.cdr Tuesday, 21 January 2014 2:36:44 PM BRIAN