TANGENT
FUNCTION
DYNAMIC
TANGENT
FUNCTION
¼ ¼ ¼ ¼
¼
4
3
2 2
¼
4
- 3
¼
4
¼
4
y
O x
y=tan_2x
-_-_¼¼-_-_E_f_E_fp_p -_-_wpp_w_ -_-_r_rp_p _p_rpr _pw_pw _EE_f_fpp_ ¼¼
y DEMO
3
-3
x
y=tanx
-_2-_2¼¼-_-_E_s_Es__pp -_-_¼¼ -_-_pwpw__ O p_pw_w ¼¼ E_sE_s_p_p 22 ¼¼ _TsT_s_p_p
Trigonometric functions (Chapter 9) 239
THE GRAPH OF y= tanx
Since tanx=
sinx
cosx
, tanxwill be undefined whenever cosx=0.
The zeros of the function y= cosx correspond to vertical asymptotes of the function y= tanx.
We observe that y= tanx has:
² period¼
² range y 2 R
² vertical asymptotes x=¼ 2 +k¼ for all k 2 Z.
Click on the icon to explore how the tangent function is produced from the unit circle.
THE GENERAL TANGENT FUNCTION
Thegeneral tangent functionis y=atanbx+c, a> 0 , b> 0.
² Theprincipal axisis y=c.
² Theperiodof this function is
¼
b
.
² Theamplitudeof this function is undefined.
Click on the icon to explore the properties of this function.
Example 4 Self Tutor
Without using technology, sketch the graph of y= tan 2x for ¡¼ 6 x 6 ¼.
Since b=2, the period is ¼ 2.
The vertical asymptotes are
x=§¼ 4 , x=§^34 ¼,
and thex-axis intercepts are at
0 ,§¼ 2 ,§¼.
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_09\239CamAdd_09.cdr Monday, 6 January 2014 4:51:27 PM BRIAN