Cambridge Additional Mathematics

(singke) #1
TANGENT
FUNCTION

DYNAMIC
TANGENT
FUNCTION

¼ ¼ ¼ ¼

¼
4
3

2 2





¼
4


  • 3




¼
4
¼
4





y

O x

y=tan_2x

-_-_¼¼-_-_E_f_E_fp_p -_-_wpp_w_ -_-_r_rp_p _p_rpr _pw_pw _EE_f_fpp_ ¼¼

y DEMO

3

-3

x

y=tanx

-_2-_2¼¼-_-_E_s_Es__pp -_-_¼¼ -_-_pwpw__ O p_pw_w ¼¼ E_sE_s_p_p 22 ¼¼ _TsT_s_p_p

Trigonometric functions (Chapter 9) 239

THE GRAPH OF y= tanx


Since tanx=
sinx
cosx
, tanxwill be undefined whenever cosx=0.

The zeros of the function y= cosx correspond to vertical asymptotes of the function y= tanx.

We observe that y= tanx has:
² period¼
² range y 2 R
² vertical asymptotes x=¼ 2 +k¼ for all k 2 Z.

Click on the icon to explore how the tangent function is produced from the unit circle.

THE GENERAL TANGENT FUNCTION


Thegeneral tangent functionis y=atanbx+c, a> 0 , b> 0.
² Theprincipal axisis y=c.
² Theperiodof this function is

¼
b

.
² Theamplitudeof this function is undefined.

Click on the icon to explore the properties of this function.

Example 4 Self Tutor


Without using technology, sketch the graph of y= tan 2x for ¡¼ 6 x 6 ¼.

Since b=2, the period is ¼ 2.

The vertical asymptotes are
x=§¼ 4 , x=§^34 ¼,
and thex-axis intercepts are at
0 ,§¼ 2 ,§¼.

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_09\239CamAdd_09.cdr Monday, 6 January 2014 4:51:27 PM BRIAN

Free download pdf