Cambridge Additional Mathematics

(singke) #1
Integration (Chapter 15) 423

Example 5 Self Tutor


If y=x^4 +2x^3 , find
dy
dx

. Hence find


Z
(2x^3 +3x^2 )dx.

If y=x^4 +2x^3 then dy
dx

=4x^3 +6x^2

)

Z
(4x^3 +6x^2 )dx=x^4 +2x^3 +c

)

Z
2(2x^3 +3x^2 )dx=x^4 +2x^3 +c

) 2

Z
(2x^3 +3x^2 )dx=x^4 +2x^3 +c

)

Z
(2x^3 +3x^2 )dx=^12 x^4 +x^3 +c

EXERCISE 15D


1 If y=x^7 , find
dy
dx

. Hence find


Z
x^6 dx.

2 If y=x^3 +x^2 , find
dy
dx

. Hence find


Z
(3x^2 +2x)dx.

3 If y=e^2 x+1, find
dy
dx

. Hence find


Z
e^2 x+1dx.

4 If y=(2x+1)^4 find
dy
dx

. Hence find


Z
(2x+1)^3 dx.

Example 6 Self Tutor


Suppose y=

p
5 x¡ 1.

a Find
dy
dx

. b Hence find


Z
1
p
5 x¡ 1
dx.

a y=

p
5 x¡ 1

=(5x¡1)

1
2

)
dy
dx
=^12 (5x¡1)
¡^12
(5) fchain ruleg

=
5
2

p
5 x¡ 1

b Usinga,

Z
5
2
p
5 x¡ 1
dx=

p
5 x¡1+c

)^52

Z
1
p
5 x¡ 1
dx=

p
5 x¡1+c

)

Z
1
p
5 x¡ 1
dx=^25

p
5 x¡1+c

5 If y=x

p
x, find
dy
dx

. Hence find


Z
p
xdx.

6 If y=
1
p
x
, find
dy
dx

. Hence find


Z
1
x
p
x
dx.

crepresents a general
constant, so is simply any
value c 2 R.
Instead of writing c 2 ,we
can therefore still write
justc.

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_15\423CamAdd_15.cdr Monday, 7 April 2014 4:03:33 PM BRIAN

Free download pdf