Integration (Chapter 15) 423
Example 5 Self Tutor
If y=x^4 +2x^3 , find
dy
dx
. Hence find
Z
(2x^3 +3x^2 )dx.
If y=x^4 +2x^3 then dy
dx
=4x^3 +6x^2
)
Z
(4x^3 +6x^2 )dx=x^4 +2x^3 +c
)
Z
2(2x^3 +3x^2 )dx=x^4 +2x^3 +c
) 2
Z
(2x^3 +3x^2 )dx=x^4 +2x^3 +c
)
Z
(2x^3 +3x^2 )dx=^12 x^4 +x^3 +c
EXERCISE 15D
1 If y=x^7 , find
dy
dx
. Hence find
Z
x^6 dx.
2 If y=x^3 +x^2 , find
dy
dx
. Hence find
Z
(3x^2 +2x)dx.
3 If y=e^2 x+1, find
dy
dx
. Hence find
Z
e^2 x+1dx.
4 If y=(2x+1)^4 find
dy
dx
. Hence find
Z
(2x+1)^3 dx.
Example 6 Self Tutor
Suppose y=
p
5 x¡ 1.
a Find
dy
dx
. b Hence find
Z
1
p
5 x¡ 1
dx.
a y=
p
5 x¡ 1
=(5x¡1)
1
2
)
dy
dx
=^12 (5x¡1)
¡^12
(5) fchain ruleg
=
5
2
p
5 x¡ 1
b Usinga,
Z
5
2
p
5 x¡ 1
dx=
p
5 x¡1+c
)^52
Z
1
p
5 x¡ 1
dx=
p
5 x¡1+c
)
Z
1
p
5 x¡ 1
dx=^25
p
5 x¡1+c
5 If y=x
p
x, find
dy
dx
. Hence find
Z
p
xdx.
6 If y=
1
p
x
, find
dy
dx
. Hence find
Z
1
x
p
x
dx.
crepresents a general
constant, so is simply any
value c 2 R.
Instead of writing c 2 ,we
can therefore still write
justc.
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_15\423CamAdd_15.cdr Monday, 7 April 2014 4:03:33 PM BRIAN