424 Integration (Chapter 15)
We can check that an integral
is correct by differentiating the
answer. It should give us the
, the function we
originally integrated.
integrand
7 If y= cos 2x, find
dy
dx
. Hence find
Z
sin 2xdx.
8 If y= sin(1¡ 5 x), find dy
dx
. Hence find
Z
cos(1¡ 5 x)dx.
9 By considering
d
dx
(x^2 ¡x)^3 , find
Z
(2x¡1)(x^2 ¡x)^2 dx.
10 Prove the rule
Z
[f(x)+g(x)]dx=
Z
f(x)dx+
Z
g(x)dx.
11 Find
dy
dx
if y=
p
1 ¡ 4 x. Hence find
Z
1
p
1 ¡ 4 x
dx.
InChapter 13we developed a set of rules to help us differentiate functions more efficiently:
Function Derivative Name
c, a constant 0
mx+c, mandcare constants m
xn nxn¡^1 power rule
cu(x) cu^0 (x)
u(x)+v(x) u^0 (x)+v^0 (x) addition rule
u(x)v(x) u^0 (x)v(x)+u(x)v^0 (x) product rule
u(x)
v(x)
u^0 (x)v(x)¡u(x)v^0 (x)
[v(x)]^2
quotient rule
y=f(u) where u=u(x)
dy
dx
=
dy
du
du
dx
chain rule
ex ex
ef(x) ef(x)f^0 (x)
lnx
1
x
F Integrating
(^0) (x)
f(x)
[f(x)]n n[f(x)]n¡^1 f^0 (x)
sinx cosx
cosx ¡sinx
tanx sec^2 x
E Rules for integration
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_15\424CamAdd_15.cdr Monday, 7 April 2014 3:58:56 PM BRIAN