Cambridge Additional Mathematics

(singke) #1
424 Integration (Chapter 15)

We can check that an integral
is correct by differentiating the
answer. It should give us the
, the function we
originally integrated.

integrand

7 If y= cos 2x, find
dy
dx

. Hence find


Z
sin 2xdx.

8 If y= sin(1¡ 5 x), find dy
dx

. Hence find


Z
cos(1¡ 5 x)dx.

9 By considering
d
dx

(x^2 ¡x)^3 , find

Z
(2x¡1)(x^2 ¡x)^2 dx.

10 Prove the rule

Z
[f(x)+g(x)]dx=

Z
f(x)dx+

Z
g(x)dx.

11 Find
dy
dx
if y=

p
1 ¡ 4 x. Hence find

Z
1
p
1 ¡ 4 x
dx.

InChapter 13we developed a set of rules to help us differentiate functions more efficiently:

Function Derivative Name

c, a constant 0

mx+c, mandcare constants m

xn nxn¡^1 power rule

cu(x) cu^0 (x)

u(x)+v(x) u^0 (x)+v^0 (x) addition rule

u(x)v(x) u^0 (x)v(x)+u(x)v^0 (x) product rule
u(x)
v(x)

u^0 (x)v(x)¡u(x)v^0 (x)
[v(x)]^2
quotient rule

y=f(u) where u=u(x)
dy
dx
=
dy
du

du
dx
chain rule

ex ex

ef(x) ef(x)f^0 (x)

lnx
1
x

F Integrating

(^0) (x)
f(x)
[f(x)]n n[f(x)]n¡^1 f^0 (x)
sinx cosx
cosx ¡sinx
tanx sec^2 x


E Rules for integration

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_15\424CamAdd_15.cdr Monday, 7 April 2014 3:58:56 PM BRIAN

Free download pdf