424 Integration (Chapter 15)We can check that an integral
is correct by differentiating the
answer. It should give us the
, the function we
originally integrated.integrand7 If y= cos 2x, find
dy
dx. Hence find
Z
sin 2xdx.8 If y= sin(1¡ 5 x), find dy
dx. Hence find
Z
cos(1¡ 5 x)dx.9 By considering
d
dx(x^2 ¡x)^3 , findZ
(2x¡1)(x^2 ¡x)^2 dx.10 Prove the ruleZ
[f(x)+g(x)]dx=Z
f(x)dx+Z
g(x)dx.11 Find
dy
dx
if y=p
1 ¡ 4 x. Hence findZ
1
p
1 ¡ 4 x
dx.InChapter 13we developed a set of rules to help us differentiate functions more efficiently:Function Derivative Namec, a constant 0mx+c, mandcare constants mxn nxn¡^1 power rulecu(x) cu^0 (x)u(x)+v(x) u^0 (x)+v^0 (x) addition ruleu(x)v(x) u^0 (x)v(x)+u(x)v^0 (x) product rule
u(x)
v(x)u^0 (x)v(x)¡u(x)v^0 (x)
[v(x)]^2
quotient ruley=f(u) where u=u(x)
dy
dx
=
dy
dudu
dx
chain ruleex exef(x) ef(x)f^0 (x)lnx
1
xF Integrating
(^0) (x)
f(x)
[f(x)]n n[f(x)]n¡^1 f^0 (x)
sinx cosx
cosx ¡sinx
tanx sec^2 x
E Rules for integration
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_15\424CamAdd_15.cdr Monday, 7 April 2014 3:58:56 PM BRIAN