Cambridge Additional Mathematics

(singke) #1
Integration (Chapter 15) 429

Likewise if n 6 =¡ 1 ,
d
dx

μ
1
a(n+1)

(ax+b)n+1


=
1
a(n+1)

(n+ 1)(ax+b)n£a,

=(ax+b)n

)

Z
(ax+b)ndx=

1
a

(ax+b)n+1
(n+1)

+c for n 6 =¡ 1

We can perform the same process for the circular functions:
d
dx

(sin(ax+b)) =acos(ax+b)

)

Z
acos(ax+b)dx= sin(ax+b)+c

) a

Z
cos(ax+b)dx= sin(ax+b)+c

So,

Likewise we can show

Z
cos(ax+b)dx=

1
a

sin(ax+b)+c for a 6 =0.
Z
sin(ax+b)dx=¡

1
a

cos(ax+b)+c for a 6 =0.

Fora,bconstants with a 6 =0, we have: Function Integral

eax+b
1
a
eax+b+c

(ax+b)n, n 6 =¡ 1
1
a

(ax+b)n+1
n+1

+c

cos(ax+b)
1
a
sin(ax+b)+c

sin(ax+b) ¡
1
a
cos(ax+b)+c

Example 11 Self Tutor


Find: a

Z
(2x+3)^4 dx b

Z
1
p
1 ¡ 2 x

dx

a

Z
(2x+3)^4 dx

=^12 £
(2x+3)^5
5
+c

= 101 (2x+3)^5 +c

b

Z
1
p
1 ¡ 2 x

dx

=

Z
(1¡ 2 x)
¡^12
dx

=¡^12 £
(1¡ 2 x)

1
2
1
2

+c


p
1 ¡ 2 x+c

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_15\429CamAdd_15.cdr Monday, 7 April 2014 3:59:33 PM BRIAN

Free download pdf