Integration (Chapter 15) 429
Likewise if n 6 =¡ 1 ,
d
dx
μ
1
a(n+1)
(ax+b)n+1
¶
=
1
a(n+1)
(n+ 1)(ax+b)n£a,
=(ax+b)n
)
Z
(ax+b)ndx=
1
a
(ax+b)n+1
(n+1)
+c for n 6 =¡ 1
We can perform the same process for the circular functions:
d
dx
(sin(ax+b)) =acos(ax+b)
)
Z
acos(ax+b)dx= sin(ax+b)+c
) a
Z
cos(ax+b)dx= sin(ax+b)+c
So,
Likewise we can show
Z
cos(ax+b)dx=
1
a
sin(ax+b)+c for a 6 =0.
Z
sin(ax+b)dx=¡
1
a
cos(ax+b)+c for a 6 =0.
Fora,bconstants with a 6 =0, we have: Function Integral
eax+b
1
a
eax+b+c
(ax+b)n, n 6 =¡ 1
1
a
(ax+b)n+1
n+1
+c
cos(ax+b)
1
a
sin(ax+b)+c
sin(ax+b) ¡
1
a
cos(ax+b)+c
Example 11 Self Tutor
Find: a
Z
(2x+3)^4 dx b
Z
1
p
1 ¡ 2 x
dx
a
Z
(2x+3)^4 dx
=^12 £
(2x+3)^5
5
+c
= 101 (2x+3)^5 +c
b
Z
1
p
1 ¡ 2 x
dx
=
Z
(1¡ 2 x)
¡^12
dx
=¡^12 £
(1¡ 2 x)
1
2
1
2
+c
=¡
p
1 ¡ 2 x+c
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_15\429CamAdd_15.cdr Monday, 7 April 2014 3:59:33 PM BRIAN