Integration (Chapter 15) 429Likewise if n 6 =¡ 1 ,
d
dxμ
1
a(n+1)(ax+b)n+1¶
=
1
a(n+1)(n+ 1)(ax+b)n£a,=(ax+b)n)Z
(ax+b)ndx=1
a(ax+b)n+1
(n+1)+c for n 6 =¡ 1We can perform the same process for the circular functions:
d
dx(sin(ax+b)) =acos(ax+b))Z
acos(ax+b)dx= sin(ax+b)+c) aZ
cos(ax+b)dx= sin(ax+b)+cSo,Likewise we can showZ
cos(ax+b)dx=1
asin(ax+b)+c for a 6 =0.
Z
sin(ax+b)dx=¡1
acos(ax+b)+c for a 6 =0.Fora,bconstants with a 6 =0, we have: Function Integraleax+b
1
a
eax+b+c(ax+b)n, n 6 =¡ 1
1
a(ax+b)n+1
n+1+ccos(ax+b)
1
a
sin(ax+b)+csin(ax+b) ¡
1
a
cos(ax+b)+cExample 11 Self Tutor
Find: aZ
(2x+3)^4 dx bZ
1
p
1 ¡ 2 xdxaZ
(2x+3)^4 dx=^12 £
(2x+3)^5
5
+c= 101 (2x+3)^5 +cbZ
1
p
1 ¡ 2 xdx=Z
(1¡ 2 x)
¡^12
dx=¡^12 £
(1¡ 2 x)1
2
1
2+c=¡p
1 ¡ 2 x+c4037 Cambridge
cyan magenta yellow black Additional Mathematics(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_15\429CamAdd_15.cdr Monday, 7 April 2014 3:59:33 PM BRIAN