Cambridge Additional Mathematics

(singke) #1
430 Integration (Chapter 15)

Example 12 Self Tutor


Integrate with respect tox:
a 2 e^2 x¡e¡^3 x b 2 sin(3x) + cos(4x+¼)

a

Z
(2e^2 x¡e¡^3 x)dx

=2(^12 )e^2 x¡(¡^13 )e¡^3 x+c

=e^2 x+^13 e¡^3 x+c

b

Z
(2 sin(3x) + cos(4x+¼))dx

=¡^23 cos(3x)+^14 sin(4x+¼)+c

EXERCISE 15F


1 Find:

a

Z
(2x+5)^3 dx b

Z
1
(3¡ 2 x)^2

dx c

Z
4
(2x¡1)^4

dx

d

Z
(4x¡3)^7 dx e

Z p
3 x¡ 4 dx f

Z
10
p
1 ¡ 5 x
dx

g

Z
3(1¡x)^4 dx h

Z
4
p
3 ¡ 4 x
dx

2 Integrate with respect tox:
a sin(3x) b 2 cos(¡ 4 x)+1 c 3 cos

¡x
2

¢

d 3 sin(2x)¡e¡x e 2 sin

¡
2 x+¼ 6

¢
f ¡3 cos

¡¼
4 ¡x

¢

g cos(2x) + sin(2x) h 2 sin(3x) + 5 cos(4x) i^12 cos(8x)¡3 sinx

3 Find y=f(x) given
dy
dx
=

p
2 x¡ 7 and that y=11when x=8.

4 The function f(x) has gradient function f^0 (x)=
4
p
1 ¡x
, and the curve y=f(x) passes through
the point (¡ 3 ,¡11).
Find the point on the graph of y=f(x) withx-coordinate¡ 8.

5 Find:

a

Z
3(2x¡1)^2 dx b

Z
(x^2 ¡x)^2 dx c

Z
(1¡ 3 x)^3 dx

d

Z
(1¡x^2 )^2 dx e

Z
4

p
5 ¡xdx f

Z
(x^2 +1)^3 dx

6 Find:

a

Z ¡
2 ex+5e^2 x

¢
dx b

Z ¡
3 e^5 x¡^2

¢
dx c

Z ¡
e^7 ¡^3 x

¢
dx

d

Z
(ex+e¡x)^2 dx e

Z
(e¡x+2)^2 dx f

Z μ

5
(1¡x)^2


dx

7 Find an expression forygiven that
dy
dx
=(1¡ex)^2 , and that the graph hasy-intercept 4.

=2£¡^13 cos(3x)+^14 sin(4x+¼)+c

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_15\430CamAdd_15.cdr Monday, 7 April 2014 3:59:41 PM BRIAN

Free download pdf