Applications of integration (Chapter 16) 443
8 Sketch the circle with equation x^2 +y^2 =9.
a Explain why the upper half of the circle has equation y=
p
9 ¡x^2.
b Hence, determine
Z 3
0
p
9 ¡x^2 dx without actually integrating the function.
9 Find the area enclosed by the function y=f(x) and thex-axis for:
a f(x)=x^3 ¡ 9 x b f(x)=¡x(x¡2)(x¡4) c f(x)=x^4 ¡ 5 x^2 +4.
10 Answer theOpening Problemon page
11 a Explain why the total area shaded isnot
equal to
Z 7
1
f(x)dx.
b Write an expression for the total shaded
area in terms of integrals.
12 The illustrated curves are y= cos(2x) and
y=^12 +^12 cos(2x).
a Identify each curve as C 1 or C 2.
b Determine the coordinates of A, B, C, D, and E.
c Show that the area of the shaded region is¼ 2 units^2.
13 Explain why the area between two functions f(x) and g(x) on the interval a 6 x 6 b is given by
A=
Zb
a
jf(x)¡g(x)jdx.
14 The shaded area is 1 unit^2.
Findb, correct to 4 decimal places.
15 The shaded area is 6 aunits^2.
Find the exact value ofa.
y
O 13 57 x
y = f(x)
y
-a O a x
y=x +2 2
438.
y
x
AE
B C D
C 1
C 2
O
y
O b x
y = ~`x
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_16\443CamAdd_16.cdr Monday, 7 April 2014 4:20:25 PM BRIAN