Cambridge Additional Mathematics

(singke) #1
Answers 453

EXERCISE 1A
1a 52 D b 62 =G cd=2fa,e,i,o,ug
df 2 , 5 gμf 1 , 2 , 3 , 4 , 5 , 6 g
ef 3 , 8 , 6 g*f 1 , 2 , 3 , 4 , 5 , 6 g
2a if 9 g iif 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 g
bi? iif 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 g
cif 1 , 3 , 5 , 7 g=A iif 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 g=B
3a 5 b 6 c 2 d 9
4atrue btrue ctrue dtrue
efalse f true gtrue hfalse
5afinite binfinite cinfinite dinfinite
6atrue btrue cfalse dtrue
7adisjoint bnot disjoint 8 true
9a 15 subsets b 2 n¡ 1 ,n 2 Z+
EXERCISE 1B
1afinite binfinite cinfinite dinfinite
einfinite f infinite ginfinite
2a iThe set of all integersxsuch thatxis between¡ 1 and
7 , including¡ 1 and 7.
ii f¡ 1 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 g iii 9
iv

biThe set of all natural numbersxsuch thatxis between
¡ 2 and 8.
ii f 1 , 2 , 3 , 4 , 5 , 6 , 7 g iii 7
iv

ciThe set of all real numbersxsuch thatxis between
0 and 1 , including 0 and 1.
ii not possible iii infinite
iv

diThe set of all rational numbersxsuch thatxis between
5 and 6 , including 5 and 6.
ii not possible iii infinite
iv cannot be illustrated
eiThe set of all real numbersxsuch thatxis between
¡ 1 and 5 , including¡ 1.
ii not possible iii infinite
iv

fiThe set of all real numbersxsuch thatxis between
3 and 5 (including 5 ), or greater than 7.
ii not possible iii infinite
iv

giThe set of all real numbersxsuch thatxis less than or
equal to 1 , or greater than 2.
ii not possible iii infinite
iv

hiThe set of all real numbersxsuch thatxis less than 2 ,
or greater than or equal to 1. (So,Ais the set of all real
numbers.)
ii not possible iii infinite
iv

3aA=fx 2 Z:¡ 100 <x< 100 g
bA=fx 2 R:x> 1000 g
cA=fx 2 Q:2 6 x 63 g
4aA=fx 2 Z:¡ 26 x 63 g
bA=fx 2 Z:x 6 ¡ 3 g
cA=fx 2 R:¡ 36 x< 2 g
dA=fx 2 R:1 6 x 63 [x> 5 g
5aAμB b A*B cAμB d AμB
eA*B f A*B
6aneither b open cneither d open
eclosed f neither
7aThere are infinitely many rational numbers within any given
interval, so we cannot representQas a series of dots like we
can withZ. We cannot representQ with a continuous line
either (like we do withR), as this would imply that irrational
numbers are part ofQ.
bithe set of positive real numbers,
fx 2 R:x> 0 g

ii the set of positive real numbers
and zero, fx 2 R:x> 0 g

EXERCISE 1C
1ainfinite binfinite

cinfinite dinfinite

2ainfinite b finite cinfinite
3a iThe set of all points of intersection between the line and
the circle.
ii The set of all points that lie on either the straight line or
the circle.

y

x

O

y=x

y

O x

1
1

-1 01

-1 01

-101234567x

1234567 x

01 x

-1 5 x

3 45678 x

12 x

0 x

ANSWERS

x+y=1

y

O x

1
1

x+y=1

y

O x

x=0

y=0

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 IB HL OPT
Sets Relations Groups
Y:\HAESE\CAM4037\CamAdd_AN\453CamAdd_AN.cdr Tuesday, 8 April 2014 8:17:01 AM BRIAN

Free download pdf