472 Answers
ciDomain is
fx:x> 2 g,
Range is
fy:y 2 Rg
iii
iiVA i s x=2,
x-intercept 27 ,
noy-intercept
iv x=7
v f¡^1 (x)=52+x+2
diDomain is
fx:x> 2 g,
Range is
fy:y 2 Rg
iii
iiVA i s x=2,
x-intercept 7 ,
noy-intercept
iv x=27
v f¡^1 (x)=5^1 ¡x+2
eiDomain is
fx:x> 0 g,
Range is
fy:y 2 Rg
iii
iiVA i s x=0,
x-intercept
p
2 ,
noy-intercept
iv x=2
v f¡^1 (x)=2
1 ¡ 2 x
2a i f¡^1 (x)
=ln(x¡5)
ii
iii Domain offis
fx:x 2 Rg,
Range is fy:y> 5 g
Domain off¡^1 is
fx:x> 5 g,
Range is fy:y 2 Rg
iv fhas a HAy=5,
fhasy-int 6
f¡^1 has a VAx=5,f¡^1 hasx-int 6
bif¡^1 (x)
=ln(x+3)¡ 1
ii
iii Domain offis
fx:x 2 Rg,
Range is
fy:y>¡ 3 g
Domain off¡^1 is
fx:x>¡ 3 g,
Range is
fy:y 2 Rg
iv fhas a HAy=¡ 3 ,x-intln 3¡ 1 , y-inte¡ 3
f¡^1 has a VAx=¡ 3 ,x-inte¡ 3 ,y-int ln 3¡ 1
cif¡^1 (x)
=ex+4
ii
iii Domain offis
fx:x> 0 g,
Range offis
fy:y 2 Rg
Domain off¡^1 is
fx:x 2 Rg,
Range is
fy:y> 0 g
iv fhas a VAx=0,x-int e^4
f¡^1 has a HAy=0,y-inte^4
dif¡^1 (x)
=1+ex¡^2
ii
iii Domain offis
fx:x> 1 g,
Range is
fy:y 2 Rg
Domain off¡^1 is
fx:x 2 Rg,
Range is fy:y> 1 g
iv fhas a VAx=1,
x-int1+e¡^2
f¡^1 has a HAy=1,
y-int 1+e¡^2
3aAisy=lnx
as itsx-intercept
is 1
b
c y=lnxhas
VA x=0
y=ln(x¡2)
has VAx=2
y=ln(x+2)
has VAx=¡ 2
4 y=ln(x^2 )=2lnx, so she is correct.
This is because they-values are twice as large for y=ln(x^2 )
as they are fory=lnx.
5af¡^1 :x 7 !ln(x¡2)¡ 3
bix<¡ 5 : 30 iix<¡ 7 : 61 iii x<¡ 9 : 91
iv x<¡ 12 : 2 Conjecture HA isy=2
c asx!1, f(x)!1,
asx!¡1,ex+3! 0 andf(x)! 2
) HA is y=2
d VA o ff¡^1 isx=2, Domain off¡^1 is fx:x> 2 g
6a if(5) = 3 iif(x^2 ) = log 2 (x^2 +3)
iii f(2x¡1) = 1 + log 2 (x+1)
b Domain off(x)is fx:x>¡ 3 g c x=§ 5
7aRange is fy:y> 1 g b f¡^1 (x)=^13 ln(x¡1)
c f¡^1 (10) =^13 ln 9
d Domain off¡^1 (x) isfx:x> 1 g
e (f±f¡^1 )(x)=(f¡^1 ±f)(x)=x
8af¡^1 (x)=^12 lnx
i (f¡^1 ±g)(x)=^12 ln(2x¡1)
ii(g±f)¡^1 (x)=^12 ln
³x+1
2
́
b x=13
9af(1) =^10
e
,g(6) = ln 3 b x-intercept ofg(x)is 4
c fg(x)=
10
x¡ 3
d x=ln2
10 a Domain off(x)is fx:x>¡ 6 g
b f¡^1 (x)=ex¡ 6
c x-intercept is¡ 5 ,y-intercept isln 6 dx=¡^83 or 3
REVIEW SET 5A
1a 3 b 8 c ¡ 2 d^12 e 0
f^14 g¡ 1 h^12 ,k> 0
y
x
y=x
6
O 6
f(x) = e + 5x
f-1
x=5
y=5
y
x
y=x
O
x=-3
f(x) = ex+1- 3
f-1
y=-3
y
x
x=1
y=1
y=x
OO
f-1
f(x) =ln(x - 1) + 2
7
y
x
~`2
O
y=1-2log 2 x
x=2
77
y
O x
y = 1 -log 5 (x - 2)
x=2
y
O x
y=log 5 (x-2)-2
27
y
x
y=x¡¡
OO
e 4
e 4
f-1
f(x)= x-4ln_
y
x
-2-2 11
O
y=lnx
y =ln(x + 2)
y =ln(x - 2)
-1-1 22 33
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 IB HL OPT
Sets Relations Groups
Y:\HAESE\CAM4037\CamAdd_AN\472CamAdd_AN.cdr Tuesday, 8 April 2014 8:33:00 AM BRIAN