Cambridge Additional Mathematics

(singke) #1
474 Answers

EXERCISE 6A.3
1aquotient isx+1, remainder is¡x¡ 4
bquotient is 3 , remainder is¡x+3
c quotient is 3 x, remainder is¡ 2 x¡ 1
dquotient is 0 , remainder isx¡ 4
2a 1 ¡
2 x
x^2 +x+1
, x^2 ¡x+1=1(x^2 +x+1)¡ 2 x

bx¡
2 x
x^2 +2
,x^3 =x(x^2 +2)¡ 2 x

c x^2 +x+3+^3 x¡^4
x^2 ¡x+1
,

x^4 +3x^2 +x¡1=(x^2 +x+ 3)(x^2 ¡x+1)+3x¡ 4

d 2 x+4+^5 x+2
(x¡1)^2
,

2 x^3 ¡x+6=(2x+ 4)(x¡1)^2 +5x+2

ex^2 ¡ 2 x+3¡^4 x+3
(x+1)^2
,

x^4 =(x^2 ¡ 2 x+ 3)(x+1)^2 ¡ 4 x¡ 3

f x^2 ¡ 3 x+5+^15 ¡^10 x
(x¡1)(x+2)
,

x^4 ¡ 2 x^3 +x+5 = (x^2 ¡ 3 x+5)(x¡1)(x+2)+15¡ 10 x
3 quotient isx^2 +2x+3, remainder is 7
4 quotient isx^2 ¡ 3 x+5, remainder is 15 ¡ 10 x
EXERCISE 6B.1
1a 4 ,¡^32 b ¡ 3 §

p
10 c 5 §

p
19
d 0 ,§ 2 e 0 ,§

p
11 f § 2 ,§

p
2
2a 1 ,¡^25 b ¡^12 ,§

p
3 c ¡ 3 ,^13 , 2
d 0 , 1 §

p
3 e 0 ,§

p
7 f §

p
2 ,§

p
5
3a(2x+ 3)(x¡5) bx(x¡7)(x¡4)
c (x¡ 3 ¡
p
6)(x¡3+
p
6)
dx(x+1+
p
5)(x+1¡
p
5) ex(3x¡2)(2x+1)
f (x+ 1)(x¡1)(x+
p
5)(x¡
p
5)
4 P(®)=0, P( ̄)=0, P(°)=0
5aP(x)=a(x+ 3)(x¡4)(x¡5), a 6 =0
bP(x)=a(x+ 2)(x¡2)(x¡3), a 6 =0
c P(x)=a(x¡3)(x^2 ¡ 2 x¡4), a 6 =0
dP(x)=a(x+ 1)(x^2 +4x+2), a 6 =0
6aP(x)=a(x^2 ¡1)(x^2 ¡2), a 6 =0
bP(x)=a(x¡2)(5x+ 1)(x^2 ¡3), a 6 =0
c P(x)=a(x+ 3)(4x¡1)(x^2 ¡ 2 x¡1), a 6 =0
dP(x)=a(x^2 ¡ 4 x¡1)(x^2 +4x¡3), a 6 =0
EXERCISE 6B.2
1aa=2,b=5, c=5 ba=3,b=4, c=3
c a=2,b=¡ 5 ,c=4
2aa=2,b=¡ 2 or a=¡ 2 ,b=2
ba=3,b=¡ 1
3aa=1,b=6, c=¡ 7 b(x+ 3)(x+ 7)(x¡1)
4ap=2,q=7,r=5 bx=^12 ,¡ 1 ,¡^52
5aa=3,b=¡ 2 ,c=1
b 3 x^3 +10x^2 ¡ 7 x+4=(x+ 4)(3x^2 ¡ 2 x+1)
¢of 3 x^2 ¡ 2 x+1is¡ 8 ,
) the only real zero is¡ 4.

6aa=1,b=¡ 2 ,c=¡ 1 ,k=¡ 4
b ¡^23 , 1 §

p
2
7aa=¡ 2 , b=2 b¡ 1 §
p
3

8 a=¡ 11 , zeros are^32 ,
¡ 3 §
p
13
2
9aa=¡ 9 , b=¡ 1
b P(x)=0whenx=¡ 1 ,¡^12 , 2 , 4
10 Hint: Let x^3 +3x^2 ¡ 9 x+c=(x+a)^2 (x+b)
Whenc=5, the cubic is (x¡1)^2 (x+5).
Whenc=¡ 27 , the cubic is (x+3)^2 (x¡3).
EXERCISE 6C
1aP(x)=Q(x)(x¡2) + 7, P(x) divided byx¡ 2
leaves a remainder of 7.
b P(¡3) =¡ 8 , P(x) divided byx+3leaves a
remainder of¡ 8.
c P(5) = 11, P(x)=Q(x)(x¡5) + 11
2a 4 b ¡ 19 c 1 34
4aa=3 ba=2 5 a=¡ 5 ,b=6
6 a=¡ 5 , b=6 7 ¡ 7
8aP(x)=Q(x)(2x¡1) +R
P(^12 )=Q(^12 )(2£^12 ¡1) +R
=Q(^12 )£0+R
=R
bi¡ 3 ii 7 iii ¡ 7
9 a=3,b=10 10 a¡ 3 b 1
EXERCISE 6D
1afactor bnot a factor c factor dnot a factor
2ac=2 b c=¡ 2 c b=3
3 k=¡ 8 , P(x)=(x+ 2)(x¡2)(2x+1)
4ak=¡ 8 b P(x)=(x¡3)(3x^2 +x¡2)
c x=¡ 1 ,^23 , 3
5 a=7,b=¡ 14 6 a=3,b=2
7aa=7,b=¡ 6 b 60
c P(x)=(x+ 3)(2x^2 +3x¡2) d ¡ 3 ,¡ 2 ,^12
8aa=7,b=2 bx=¡ 2 §
p
6
9a iP(a)=0, x¡ais a factor
ii(x¡a)(x^2 +ax+a^2 )
biP(¡a)=0, x+ais a factor
ii(x+a)(x^2 ¡ax+a^2 )
10 a=2
EXERCISE 6E
1ax=1, 2 , 3 b x=¡ 1 , 2 f 2 is a double rootg
c x=1,¡ 1 ,¡ 2 d x=¡ 1 , 3 , 4 ex=¡ 5 ,¡ 4 , 4
f x=¡ 3 ,¡ 5 f¡ 5 is a double rootg
2ax=¡ 2 , 2 , 3 b x=¡ 3 ,¡ 2 , 6 c x=¡ 3 , 4 , 7
REVIEW SET 6A
1a 8 x^2 +6x+3 b 7 x^2 ¡ 9 x+9
c 15 x^4 +32x^3 +29x¡ 4
2aquotient=2x+5, remainder=3
b quotient=x^2 ¡ 4 x+2, remainder=¡ 5
3a^43 ,¡ 2 b¡ 4 §
p
5

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 IB HL OPT
Sets Relations Groups
Y:\HAESE\CAM4037\CamAdd_AN\474CamAdd_AN.cdr Tuesday, 8 April 2014 8:33:13 AM BRIAN

Free download pdf