Cambridge Additional Mathematics

(singke) #1
492 Answers

EXERCISE 13G
1af^0 (x)=2x¡ 1 bf^0 (x)=4x+2
c f^0 (x)=2x(x+1)

(^12)
+^12 x^2 (x+1)
¡^12
2ady
dx
=2x(2x¡1) + 2x^2
b dy
dx
= 4(2x+1)^3 +24x(2x+1)^2
c dy
dx
=2x(3¡x)
(^12)
¡^12 x^2 (3¡x)
¡^12
d dy
dx
=^12 x
¡^12
(x¡3)^2 +2
p
x(x¡3)
e dy
dx
=10x(3x^2 ¡1)^2 +60x^3 (3x^2 ¡1)
f dy
dx
=^12 x
¡^12
(x¡x^2 )^3 +3
p
x(x¡x^2 )^2 (1¡ 2 x)
3a¡ 48 b 40614 c^133 d^112
4bx=3or^35 c x 60 5 x=¡ 1 andx=¡^53
EXERCISE 13H
1a
dy
dx


7
(2¡x)^2
b
dy
dx


2 x(2x+1)¡ 2 x^2
(2x+1)^2
c
dy
dx


(x^2 ¡3)¡ 2 x^2
(x^2 ¡3)^2
d dy
dx


1
2 x
¡^12
(1¡ 2 x)+2
p
x
(1¡ 2 x)^2
e dy
dx
=^2 x(3x¡x
(^2) )¡(x (^2) ¡3)(3¡ 2 x)
(3x¡x^2 )^2
f
dy
dx=
(1¡ 3 x)
(^12)
+^32 x(1¡ 3 x)
¡^12
1 ¡ 3 x
2a 1 b 1 c ¡ 3247 d¡^2827
3b inever fdy
dx
is undefined at x=¡ 1 g
iix 60 andx=1
4b ix=¡ 2 §
p
11 iix=¡ 2
EXERCISE 13I
1af^0 (x)=4e^4 x bf^0 (x)=ex
c f^0 (x)=¡ 2 e¡^2 x df^0 (x)=^12 e
x 2
ef^0 (x)=¡e
¡x 2
f f^0 (x)=2e¡x
gf^0 (x)=2e
x 2
+3e¡x hf^0 (x)=e
x¡e¡x
2
i f^0 (x)=¡ 2 xe¡x^2 j f^0 (x)=e
x^1
£¡^1
x^2
kf^0 (x)=20e^2 x l f^0 (x)=40e¡^2 x
m f^0 (x)=2e^2 x+1 nf^0 (x)=^14 e
x 4
o f^0 (x)=¡ 4 xe^1 ¡^2 x
2
pf^0 (x)=¡ 0 : 02 e¡^0 :^02 x
2aex+xex b 3 x^2 e¡x¡x^3 e¡x
c xe
x¡ex
x^2
d^1 ¡x
ex
e 2 xe^3 x+3x^2 e^3 x f
xex¡^12 ex
x
p
x
g^12 x
¡^12
e¡x¡x
(^12)
e¡x h e
x+2+2e¡x
(e¡x+1)^2
3a 108 b¡ 1 c p^9194 k=¡ 9
5a
dy
dx=2
xln 2 6 P=(0,0)or(2,^4
e^2 )
EXERCISE 13J
1a
dy
dx


1
x
b
dy
dx


2
2 x+1
c
dy
dx


1 ¡ 2 x
x¡x^2
d dy
dx
=¡^2
x
e dy
dx
=2xlnx+x
f dy
dx
=^1 ¡lnx
2 x^2
g dy
dx
=exlnx+e
x
x
h
dy
dx


2lnx
x
i
dy
dx


1
2 x
p
lnx
j
dy
dx=
e¡x
x ¡e
¡xlnx k dy
dx=
ln(2x)
2 px +
1
px
l dy
dx
=plnx¡^2
x(lnx)^2
m dy
dx
=^4
1 ¡x
n
dy
dx
=ln(x^2 +1)+
2 x^2
x^2 +1
2a
dy
dx
=ln5 b
dy
dx


3
x
c
dy
dx


4 x^3 +1
x^4 +x
d dy
dx
=^1
x¡ 2
e dy
dx
=^6
2 x+1
[ln(2x+1)]^2
f dy
dx
=^1 ¡ln(4x)
x^2
g dy
dx
=¡^1
x
h
dy
dx


1
xlnx
i
dy
dx


¡ 1
x(lnx)^2
3a
dy
dx


¡ 1
1 ¡ 2 x
b
dy
dx


¡ 2
2 x+3
c
dy
dx
=1+
1
2 x
d dy
dx
=^1
x
¡^1
2(2¡x)
e dy
dx
=^1
x+3
¡^1
x¡ 1
f
dy
dx


2
x




  • 1
    3 ¡x
    g f^0 (x)=
    9
    3 x¡ 4
    h f^0 (x)=^1
    x
    +^2 x
    x^2 +1
    i f^0 (x)=^2 x+2
    x^2 +2x
    ¡^1
    x¡ 5
    4a 2 b¡^535 a=3, b=¡e
    EXERCISE 13K
    1ady
    dx
    = 2 cos(2x) b dy
    dx
    = cosx¡sinx
    c
    dy
    dx
    =¡3 sin(3x)¡cosx d
    dy
    dx
    = cos(x+1)
    e
    dy
    dx
    = 2 sin(3¡ 2 x) f
    dy
    dx


    5
    cos^2 (5x)
    g dy
    dx
    =^12 cos
    ¡x
    2
    ¢



  • 3 sinx h dy
    dx
    =^3 ¼
    cos^2 (¼x)
    i dy
    dx
    = 4 cosx+ 2 sin(2x)
    2a 2 x¡sinx b^1
    cos^2 x
    ¡3 cosx
    c excosx¡exsinx d¡e¡xsinx+e¡xcosx
    e cosx
    sinx
    f 2 e^2 xtanx+ e
    2 x
    cos^2 x
    g 3 cos(3x)
    h ¡^12 sin
    ¡x
    2
    ¢
    i
    6
    cos^2 (2x)
    j cosx¡xsinx
    k xcosx¡sinx
    x^2
    l tanx+ x
    cos^2 x
    cyan magenta yellow black
    (^05255075950525507595)
    100 100
    (^05255075950525507595)
    100 100 IB HL OPT
    Sets Relations Groups
    Y:\HAESE\CAM4037\CamAdd_AN\492CamAdd_AN.cdr Tuesday, 8 April 2014 8:39:25 AM BRIAN

Free download pdf