Cambridge Additional Mathematics

(singke) #1
Answers 491

2a x Point B Gradient of AB
0 (0,0) 2
1 (1,1) 3
1 : 5 (1: 5 , 2 :25) 3 : 5
1 : 9 (1: 9 , 3 :61) 3 : 9
1 : 99 (1: 99 , 3 :9601) 3 : 99
1 : 999 (1: 999 , 3 :996 001) 3 : 999
x Point B Gradient of AB
5 (5,25) 7
3 (3,9) 5
2 : 5 (2: 5 , 6 :25) 4 : 5
2 : 1 (2: 1 , 4 :41) 4 : 1
2 : 01 (2: 01 , 4 :0401) 4 : 01
2 : 001 (2: 001 , 4 :004 001) 4 : 001

b lim
x! 2

x^2 ¡ 4
x¡ 2
=4
The gradient of the tangent to y=x^2 at the point(2,4)
is 4.
EXERCISE 13C
1af(2) = 3 bf^0 (2) = 0
2af(0) = 4 bf^0 (0) =¡ 1 3 f(2) = 3,f^0 (2) = 1
EXERCISE 13D
1af^0 (x)=1 bf^0 (x)=0 c f^0 (x)=2

2a
dy
dx
=¡ 1 b
dy
dx
=2x¡ 3 c
dy
dx
=4x+1
3a 3 b¡ 12 c 9 d 10
EXERCISE 13E
1af^0 (x)=3x^2 bf^0 (x)=6x^2
cf^0 (x)=14x df^0 (x)=p^3
x
ef^0 (x)=p 31
x^2

ff^0 (x)=2x+1
gf^0 (x)=¡ 4 x hf^0 (x)=2x+3
i f^0 (x)=2x^3 ¡ 12 x j f^0 (x)=^6
x^2
kf^0 (x)=¡
2
x^2
+
6
x^3
l f^0 (x)=2x¡
5
x^2
mf^0 (x)=2x+
3
x^2
nf^0 (x)=¡
1
2 x
p
x
of^0 (x)=8x¡ 4 pf^0 (x)=3x^2 +12x+12

2a
dy
dx
=7: 5 x^2 ¡ 2 : 8 x b
dy
dx
=2¼x

c
dy
dx

2
5 x^3
d
dy
dx
= 100

e dy
dx
=10 f dy
dx
=12¼x^2

3a 6 b^3

p
x
2
c 2 x¡ 10 d 2 ¡ 9 x^2 e 2 x¡ 1


2
x^3
+
3
p
x
g4+
1
4 x^2
h 6 x^2 ¡ 6 x¡ 5

4a 4 b ¡ 72916 c ¡ 7 d^134 e^18 f ¡ 11
5 b=3, c=¡ 4

6af^0 (x)=p^2
x
+1 bf^0 (x)=^1
33

p
x^2
cf^0 (x)=^1
x
p
x
df^0 (x)=2¡^1
2
p
x
ef^0 (x)=¡^2
xpx
ff^0 (x)=6x¡^32 px

gf^0 (x)=
¡ 25
2 x^3
p
x
hf^0 (x)=2+
9
2 x^2
p
x
7a
dy
dx
=4+
3
x^2
,
dy
dx
is the gradient function ofy=4x¡
3
x
from which the gradient at any point can be found.
b
dS
dt
=4t+4ms¡^1 ,
dS
dt
is the instantaneous rate of
change in position at the timet, or the velocity function.
c dC
dx
=3+0: 004 x$ per toaster, dC
dx
is the instantaneous
rate of change in cost as the number of toasters changes.

EXERCISE 13F.1
1agf(x)=(2x+7)^2 bgf(x)=2x^2 +7
cgf(x)=
p
3 ¡ 4 x dgf(x)=3¡ 4
p
x
egf(x)=
2
x^2 +3
fgf(x)=
4
x^2
+3
2 Note: There may be other answers.
ag(x)=x^3 , f(x)=3x+10
bg(x)=
1
x
, f(x)=2x+4
cg(x)=
p
x, f(x)=x^2 ¡ 3 x
dg(x)=^10
x^3
, f(x)=3x¡x^2

EXERCISE 13F.2
1au¡^2 , u=2x¡ 1 bu

(^12)
, u=x^2 ¡ 3 x
c 2 u
¡^12
, u=2¡x^2 du
(^13)
, u=x^3 ¡x^2
e 4 u¡^3 , u=3¡x f 10 u¡^1 , u=x^2 ¡ 3
2ady
dx
= 8(4x¡5) b dy
dx
= 2(5¡ 2 x)¡^2
c
dy
dx
=^12 (3x¡x^2 )
¡^12
£(3¡ 2 x)
d
dy
dx
=¡12(1¡ 3 x)^3 e
dy
dx
=¡18(5¡x)^2
f
dy
dx
=^13 (2x^3 ¡x^2 )
¡^23
£(6x^2 ¡ 2 x)
g dy
dx
=¡60(5x¡4)¡^3
h dy
dx
=¡4(3x¡x^2 )¡^2 £(3¡ 2 x)
i dy
dx
=6
³
x^2 ¡^2
x
́ 2
£
³
2 x+^2
x^2
́
3a¡p^13 b ¡ 18 c ¡ 8 d¡ 4 e ¡ 323 f 0
4 a=3, b=1 5 a=2,b=1
6ady
dx
=3x^2 , dx
dy
=^13 y
¡^23
Hint: Substitutey=x^3
b
dy
dx
£
dx
dy


dy
dy
fchain ruleg =1
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 IB HL OPT
Sets Relations Groups
Y:\HAESE\CAM4037\CamAdd_AN\491CamAdd_AN.cdr Tuesday, 8 April 2014 8:39:19 AM BRIAN

Free download pdf