Cambridge Additional Mathematics

(singke) #1
(1 -2),

(3 0),
(0 -3),

x

y y=x -3x 2

y=x-3
O

y=ex- 1

y=2- 2 e-x
(0 0),
(21)ln¡,

y

x
y=-1

y=2

O

y

x
y=x 2

y=4x¡¡ 2

(_ _ 1)Qw,¡

O

40

50

t(sec)

v(t) = 50 - 10e-0.5t

v(t) (ms-1)

O

10
2 4 6 8 10 12 14 16 18 20

20

30

40

velocity km h()-1

t(mins)

O

50

y

3 x

3

-3

-3

O

x+y=9 22

Answers 501

EXERCISE 16A
1a 30 units^2 b^92 units^2 c^272 units^2 d 2 units^2
2a^13 units^2 b 2 units^2 c 6334 units^2
d(e¡1)units^2 e 2056 units^2 f 18 units^2
g^12 units^2 h 412 units^2 i (2e¡
2
e
)units^2
3 23 units^2
EXERCISE 16B
1a 412 units^2 b (1 +e¡^2 )units^2 c 1275 units^2
d 2 units^2 e 214 units^2 f(¼ 2 ¡1)units^2
21023 units^2
3a b(1,¡2)and
(3,0)
c 113 units^2

4 13 units^2
5a

b(0,0)and(ln 2,1)
cenclosed area= 3 ln 2¡2(¼ 0 :0794)units^2
6 12 units^2
7

enclosed area= 121 units^2
8aRearranging
x^2 +y^2 =9 gives
y=§

p
9 ¡x^2.
The upper half has
y> 0 ,so
y=

p
9 ¡x^2.
b^94 ¼
9a 4012 units^2 b 8 units^2 c 8 units^2
10 aC 1 isy= sinx,C 2 is y= 3 sinx b 4 units^2
11 a

R 5
3 f(x)dx=¡(area betweenx=3andx=5)
b

R 3
1 f(x)dx¡

R 5
3 f(x)dx+

R 7
5 f(x)dx
12 aC 1 isy=^12 +^12 cos(2x),C 2 isy= cos(2x)
bA(0,1),B(¼ 4 ,0),C(¼ 2 ,0),D(^34 ¼,0),E(¼,1)

cArea=


0 (

1
2 +
1
2 cos(2x)¡cos(2x))dx
13 If h(x)> 0 ona 6 x 6 b, the area betweeny=h(x)and
thex-axis is

Rb
ah(x)dx.Ifh(x)<^0 on a^6 x^6 b, the
area betweeny=h(x)and thex-axis is

Rb
a¡h(x)dx.
) the area between y=h(x) and thex-axis on a 6 x 6 b
is

Rb
ajh(x)jdx.
Letting h(x)=f(x)¡g(x), the area between
y=f(x)¡g(x) and thex-axis y=0on a 6 x 6 bis
Rb
ajf(x)¡g(x)jdx.
Equivalently, the area between y=f(x) andy=g(x) on
a 6 x 6 bis

Rb
ajf(x)¡g(x)jdx.
14 b¼ 1 : 3104 15 a=

p
3
EXERCISE 16C.1
1110 m
2a itravelling forwards
ii travelling backwards (opposite direction)
b 16 km c 8 km from starting point (on positive side)
3a b 9 : 75 km

EXERCISE 16C.2
1as(t)=t¡t^2 +2cm b^12 cm c 0 cm
2as(t)=^13 t^3 ¡^12 t^2 ¡ 2 tcm b 516 cm
c 112 cm left of its starting point
3

p3+2
4 m
4as(t)=32t+2t^2 +16m
bno change of direction
so displacement=s(t 1 )¡s(0) =

Rt 1
0 (32 + 4t)dt
cacceleration=4ms¡^2
5a 41 units b 34 units 6b 2 m
7a 40 ms¡^1 b 47 : 8 ms¡^1 c 1 : 39 seconds
dast!1,v(t)! 50 from below
ea(t)=5e¡^0 :^5 t and asex> 0 for allx,
a(t)> 0 for allt.
fg¼ 134 : 5 m

8av(t)=¡
1
(t+1)^2
+1ms¡^1

bs(t)=^1
t+1
+t¡ 1 m

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 IB HL OPT
Sets Relations Groups
Y:\HAESE\CAM4037\CamAdd_AN\501CamAdd_AN.cdr Tuesday, 8 April 2014 8:40:43 AM BRIAN

Free download pdf