Data Mining: Practical Machine Learning Tools and Techniques, Second Edition

(Brent) #1
Moore, A. W., and M. S. Lee. 1994. Efficient algorithms for minimizing cross vali-
dation error. In W. W. Cohen and H. Hirsh, editors,Proceedings of the Eleventh
International Conference on Machine Learning, New Brunswick, NJ. San
Francisco: Morgan Kaufmann, pp. 190–198.
———. 1998. Cached sufficient statistics for efficient machine learning with large
datasets.Journal Artificial Intelligence Research8:67–91.
Moore, A. W., and D. Pelleg. 2000.X-means: Extending k-means with efficient
estimation of the number of clusters. In P. Langley, editor,Proceedings of the
Seventeenth International Conference on Machine Learning, Stanford, CA. San
Francisco: Morgan Kaufmann, pp. 727–734.
Nadeau, C., and Y. Bengio. 2003. Inference for the generalization error.Machine
Learning52(3):239–281.
Nahm, U. Y., and R. J. Mooney. 2000. Using information extraction to aid the dis-
covery of prediction rules from texts.Proceedings of the Workshop on Text
Mining at the Sixth International Conference on Knowledge Discovery and Data
Mining, Boston, MA, pp. 51–58.
Nie, N. H., C. H. Hull, J. G. Jenkins, K. Steinbrenner, and D. H. Bent. 1970.Statis-
tical package for the social sciences.New York: McGraw Hill.
Nigam, K., and R. Ghani. 2000. Analyzing the effectiveness and applicability of co-
training.Proceedings of the Ninth International Conference on Information and
Knowledge Management, McLean, VA. New York: ACM, pp. 86–93.
Nigam, K., A. K. McCallum, S. Thrun, and T. M. Mitchell. 2000. Text classification from
labeled and unlabeled documents using EM.Machine Learning39(2/3):103–134.
Nilsson, N. J. 1965.Learning machines.New York: McGraw Hill.
Omohundro, S. M. 1987. Efficient algorithms with neural network behavior.Journal
of Complex Systems1(2):273–347.
Paynter, G. W. 2000.Automating iterative tasks with programming by demonstration.
PhD Dissertation, Department of Computer Science, University of Waikato,
New Zealand.
Piatetsky-Shapiro, G., and W. J. Frawley, editors. 1991.Knowledge discovery in data-
bases.Menlo Park, CA: AAAI Press/MIT Press.
Platt, J. 1998. Fast training of support vector machines using sequential minimal
optimization. In B. Schölkopf, C. Burges, and A. Smola, editors,Advances in
kernel methods: Support vector learning.Cambridge, MA: MIT Press.
Provost, F., and T. Fawcett. 1997. Analysis and visualization of classifier perform-
ance: Comparison under imprecise class and cost distributions. In D.

REFERENCES 499


P088407-REF.qxd 4/30/05 11:24 AM Page 499

Free download pdf