Data Mining: Practical Machine Learning Tools and Techniques, Second Edition

(Brent) #1
Heckerman, H. Mannila, D. Pregibon, and R. Uthurusamy, editors,
Proceedings of the Third International Conference on Knowledge Discovery and
Data Mining, Huntington Beach, CA. Menlo Park, CA: AAAI Press.
Pyle, D. 1999.Data preparation for data mining.San Francisco: Morgan Kaufmann.

Quinlan, J. R. 1986. Induction of decision trees.Machine Learning1(1):81–106.
———. 1992. Learning with continuous classes. In N. Adams and L. Sterling,
editors,Proceedings of the Fifth Australian Joint Conference on Artificial Intel-
ligence, Hobart, Tasmania. Singapore: World Scientific, pp. 343–348.

———. 1993.C4.5: Programs for machine learning.San Francisco: Morgan Kaufmann.
Rennie, J. D. M., L. Shih, J. Teevan, and D. R. Karger. 2003. Tackling the poor assump-
tions of Naïve Bayes text classifiers. In T. Fawcett and N. Mishra, editors,
Proceedings of the Twentieth International Conference on Machine Learning,
Washington, DC. Menlo Park, CA: AAAI Press, pp. 616–623.

Ricci, F., and D. W. Aha. 1998. Error-correcting output codes for local learners. In
C. Nedellec and C. Rouveird, editors,Proceedings of the European Conference on
Machine Learning, Chemnitz, Germany. Berlin: Springer-Verlag, pp. 280–291.
Richards, D., and P. Compton. 1998. Taking up the situated cognition challenge
with ripple-down rules.International Journal of Human-Computer Studies
49(6):895–926.

Ripley, B. D. 1996.Pattern recognition and neural networks. Cambridge, UK:
Cambridge University Press.
Rissanen, J. 1985. The minimum description length principle. In S. Kotz and N. L.
Johnson, editors,Encyclopedia of Statistical Sciences, Vol. 5.New York: John
Wiley, pp. 523–527.

Rousseeuw, P. J., and A. M. Leroy. 1987.Robust regression and outlier detection.New
York: John Wiley.
Sahami, M., S. Dumais, D. Heckerman, and E. Horvitz. 1998. A Bayesian approach
to filtering junk email. In Proceedings of the AAAI-98 Workshop on Learning
for Text Categorization, Madison, WI. Menlo Park, CA: AAAI Press, pp. 55–62.

Saitta, L., and F. Neri. 1998. Learning in the “real world.”Machine Learning
30(2/3):133–163.
Salzberg, S. 1991. A nearest hyperrectangle learning method.Machine Learning
6(3):251–276.

Schapire, R. E., Y. Freund, P. Bartlett, and W. S. Lee. 1997. Boosting the margin: A
new explanation for the effectiveness of voting methods. In D. H. Fisher,

500 REFERENCES


P088407-REF.qxd 4/30/05 11:24 AM Page 500

Free download pdf