H ence, Equation (5.67) leads to
It is of interest to note that the result given by Equation (5.72) can be written as
where
implying that, although Y 1 and Y 2 are both functions of X 1 and X 2 , they are
independent and identically and normally distributed.
Ex ample 5. 19. Problem: for the same distributions assigned to X 1 and X 2 in
Example 5.18, determine the jpdf of Y 1 (X 12 X 2 2 )1/2 and Y 2 X 1 /X 2.
Answer: let us first note that Y 1 takes values only in the positive range.
H ence,
For y 1 0, the transformationy g(x) admits two solutions. They are:
and
Functions of Random Variables 151
fY 1 Y 2 y 1 ;y 2 fX 1 g^11 yfX 2 g^21 yjJj
1
4
exp
y 1 y 2 ^2
8
"
exp
y 1
y 2 ^2
8
"
1
4
exp
y^21 y^22
4
;
1;
1<
y 1 ;y 2 <
1;1:
5 : 72
fY 1 Y 2
y 1 ;y 2 fY 1
y 1 fY 2
y 2 ;
5 : 73
fY 1
y 1
1
4 ^1 =^2
exp
y^21
4
;
1 <y 1 < 1 ;
fY 2
y 2
1
4 ^1 =^2
exp
y^22
4
;
1 <y 2 < 1 ;
fY 1 Y 2
y 1 ;y 2 0 ; y 1 < 0 :
x 11 g^111
y
y 1 y 2
1 y^22 ^1 =^2
;
x 12 g^121
y
y 1
1 y^22 ^1 =^2
;
x 21 g^211
y
x 11 ;
x 22 g^221
y
x 12 :