660 Practical MATLAB® Applications for Engineers
FIGURE 6.84
Plots of Butterworth and Chebyshev BSFs of Example 6.22.
0 1 2 3 4
0
−0.5
0
0.5
1
1.5
magnitude
−0.5
0
0.5
1
1.5
magnitude
Butt. BS,center freq=2,stopband=1Butt. Butt.BSF
Cheb.BS ,cent freq=2,BW stopband=1 Cheb. BSF
0246
0246
− 200
− 100
100
200
phase (deg)
0
− 200
− 100
100
200
phase (deg)
frequency (rad/sec)
0246
frequency (rad/sec)
b. Then ht
s
()
£^11
1
h(t) = e−t for t > 0
and
c. h(nT) = e−nT for t > 0
b. H(z) = Z{e−nT } * T
H(z) = Z{e−n(0.01)} * {0.01}
H(z) = Z{e−(0.01)}n (^) {0.01}
Hz
z
ze
()
(. )
001
(^001)
6.5 Application Problems
P.6.1 Verify that the transfer function given by
Hjw
a
jw a
() a
for 0
is of an LPF, and evaluate by hand the following
a. The gain at H(w = 0 ) and H(w = ∞)
b. The cutoff frequency wc
c. The gain at H(w = wc) and phase at H(w = wc)
d. The fi lter’s BW