Algebraic fractions (Chapter 16) 341
Example 2 Self Tutor
Simplify: a
(x+ 3)(x¡2)
4(x+3)
b
2(x+3)^2
x+3
a
(x+ 3)(x¡2)
4(x+3)
=
x¡ 2
4
b
2(x+3)^2
x+3
=
2(x+ 3)(x+3)
(x+3)
=2(x+3)
EXERCISE 16A.1
1 Simplify if possible:
a
6 a
3
b
10 b
5
c
3
6 x
d
8 t
t
e
t+2
t
f
8 a^2
4 a
g
2 b
4 b^2
h
2 x^2
x^2
i
4 a
12 a^3
j
4 x^2
8 x
k
t^2 +8
t
l
a^2 b
ab^2
m
a+b
a¡c
n
15 x^2 y^3
3 xy^4
o
8 abc^2
4 bc
p
(2a)^2
a
q
(2a)^2
4 a^2
r
(3a^2 )^2
3 a
s
(3a^2 )^2
9 a^2
t
(3a^2 )^2
18 a^3
2 Split the following expressions into two parts and simplify if possible.
For example,
x+9
x
=
x
x
+
9
x
=1+
9
x
:
a
x+3
3
b
4 a+1
2
c
a+b
c
d
a+2b
b
e
2 a+4
2
f
3 a+6b
3
g
4 m+8n
4
h
4 m+8n
2 m
3 Which of the expressions in 2 could be simplified and which could not? Explain why this is so.
4 Simplify:
a
3(x+2)
3
b
4(x¡1)
2
c
7(b+2)
14
d
2(n+5)
12
e
10
5(x+2)
f
15
5(3¡a)
g
6(x+2)
(x+2)
h
x¡ 4
2(x¡4)
i
2(x+2)
x(x+2)
j
x(x¡5)^2
3(x¡5)
k
(x+ 2)(x+3)
2(x+2)^2
l
(x+ 2)(x+5)
5(x+5)
m
(x+ 2)(x¡1)
(x¡1)(x+3)
n
(x+ 5)(2x¡1)
3(2x¡1)
o
(x+6)^2
3(x+6)
p
x^2 (x+2)
x(x+ 2)(x¡1)
q
(x+2)^2 (x+1)
4(x+2)
r
(x+2)^2 (x¡1)^2
(x¡1)^2 x^2
In these examples
is the
common factor.
(+3)x
1
(^11)
1
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_16\341IGCSE01_16.CDR Thursday, 2 October 2008 1:43:42 PM PETER