Cambridge International Mathematics

(Tina Sui) #1
Algebraic fractions (Chapter 16) 341

Example 2 Self Tutor


Simplify: a

(x+ 3)(x¡2)
4(x+3)

b

2(x+3)^2
x+3

a

(x+ 3)(x¡2)
4(x+3)

=

x¡ 2
4

b

2(x+3)^2
x+3

=

2(x+ 3)(x+3)
(x+3)

=2(x+3)

EXERCISE 16A.1
1 Simplify if possible:

a

6 a
3

b

10 b
5

c

3

6 x

d

8 t
t

e

t+2
t

f

8 a^2
4 a

g

2 b
4 b^2

h

2 x^2
x^2

i

4 a
12 a^3

j

4 x^2
8 x

k

t^2 +8
t
l

a^2 b
ab^2
m

a+b
a¡c
n

15 x^2 y^3
3 xy^4
o

8 abc^2
4 bc

p

(2a)^2
a

q

(2a)^2
4 a^2

r

(3a^2 )^2
3 a

s

(3a^2 )^2
9 a^2

t

(3a^2 )^2
18 a^3
2 Split the following expressions into two parts and simplify if possible.

For example,

x+9
x

=

x
x

+

9

x

=1+

9

x

:

a

x+3
3

b

4 a+1
2

c

a+b
c

d

a+2b
b

e

2 a+4
2
f

3 a+6b
3
g

4 m+8n
4
h

4 m+8n
2 m
3 Which of the expressions in 2 could be simplified and which could not? Explain why this is so.
4 Simplify:

a
3(x+2)
3

b
4(x¡1)
2

c
7(b+2)
14

d

2(n+5)
12
e

10

5(x+2)
f

15

5(3¡a)

g

6(x+2)
(x+2)

h

x¡ 4
2(x¡4)

i

2(x+2)
x(x+2)

j
x(x¡5)^2
3(x¡5)

k
(x+ 2)(x+3)
2(x+2)^2

l
(x+ 2)(x+5)
5(x+5)

m

(x+ 2)(x¡1)
(x¡1)(x+3)
n

(x+ 5)(2x¡1)
3(2x¡1)
o

(x+6)^2
3(x+6)

p

x^2 (x+2)
x(x+ 2)(x¡1)

q

(x+2)^2 (x+1)
4(x+2)

r

(x+2)^2 (x¡1)^2
(x¡1)^2 x^2

In these examples
is the
common factor.

(+3)x

1

(^11)
1
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_16\341IGCSE01_16.CDR Thursday, 2 October 2008 1:43:42 PM PETER

Free download pdf