Algebraic fractions (Chapter 16) 351
b
¡ 3
(x+ 2)(x¡1)
+
x
x¡ 1
=
¡ 3
(x+ 2)(x¡1)
+
³ x
x¡ 1
́μx+2
x+2
¶
fLCD=(x+ 2)(x¡1)g
=
¡3+x(x+2)
(x+ 2)(x¡1)
=
x^2 +2x¡ 3
(x+ 2)(x¡1)
=
(x+ 3)(x¡1)
(x+ 2)(x¡1)
=
x+3
x+2
EXERCISE 16D.2
1 Write as a single fraction:
a
2
x(x+1)
+
1
x+1
b
2
x(x+1)
+
x
x+1
c
2 x
x¡ 3
+
4
(x+ 2)(x¡3)
d
2 x
x¡ 3
¡
30
(x+ 2)(x¡3)
e
3
(x¡2)(x+3)
+
x
x+3
f
x
x+3
¡
15
(x¡2)(x+3)
g
2 x
x+4
¡
40
(x¡1)(x+4)
h
x+5
x¡ 2
¡
63
(x¡2)(x+7)
2aWrite
2
(x+ 2)(x¡3)
+
2 x
x¡ 3
as a single fraction.
b Hence, find the values ofxwhen this expression is: i undefined ii zero.
3 Simplify: a
x
x¡ 2 ¡^3
x¡ 3
b
3 x
x+4¡^1
x¡ 2
c
x^2
x+2¡^1
x+1
d
x^2
2 ¡x+9
x¡ 3
e
1
x^2 ¡
1
4
x¡ 2
f
x¡ 3
x^2 ¡
1
16
x¡ 4
4aSimplify:
2
x+1¡
x
3
2 ¡x
b Hence, find the values ofxwhen this expression is: i undefined ii zero.
Review set 16A
#endboxedheading
1 Simplify:
a
6 x^2
2 x
b 6 £
n
2
c
x
2
¥ 3 d
8 x
(2x)^2
2 Simplify, if possible:
a
8
4(c+3)
b
3 x+8
4
c
4 x+8
4
d
x(x+1)
3(x+ 1)(x+2)
The expression is zero when
. The expression is
undefined when
and also when We
can see this from the
original expression.
x
x
x:
=3
=2
=1
¡
¡
1
1
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_16\351IGCSE01_16.CDR Thursday, 2 October 2008 2:12:39 PM PETER