The Chemistry Maths Book, Second Edition

(Grace) #1




























Section 4.5


Differentiate from first principles:



  1. 2 x


2

1 + 13 x 1 + 14 19.x


4


  1. 22 x


2

21.x


322

22.e


−x

Section 4.6


Differentiate by rule:


23.x


3

24.x


524

25.x


123


  1. 12 x


3


  1. 11 − 12 x 1 + 13 x


2

1 − 14 x


3

1 + 151 sin 1 x 1 − 161 cos 1 x 1 + 17 e


x

1 − 181 ln 1 x


28.The virial equation of state of a gas at low pressure is. Find


at constant Tand n (assume Bis also constant).


Products and quotients


Differentiate


29.(1 1 − 14 x


2

) 1 cos 1 x 30.(2 1 + 13 x)e


x

31.e


x

1 cos 1 x 32.x 1 ln 1 x


33.(1 1 + 12 x 1 + 13 x


2

) 2 (3 1 + 1 x


3

) 34.(1 1 − 14 x


2

) 2 sin 1 x 35.cos 1 x 2 sin 1 x 36.(1n 1 x) 2 x


Chain rule


Differentiate


37.(1 1 + 1 x)


5













41.sin 14 x 42.e


− 2 x


  1. 44 .ln(2x


2

1 − 13 x 1 + 1 1)


45.cos(2x


2

1 − 13 x 1 + 1 1) 46.e


sin

1


x

47.ln(cos 1 x) 48.



  1. 50.ln(sin 12 x 1 + 1 sin


2

1 x) 51. 3 x


2

(2 1 + 1 x)


122

52.sin 1 x 1 cos 12 x


53.tan 14 x 1 cos


2

12 x 54. 55.


Inverse functions


56.Ifx 1 = 12 y


2

1 − 13 y 1 + 1 1, find.


Find at constant Tand nfor the following equations of state (assume that B,a andb


are constants).


dV


dp


dy


dx


3


2


2

212

x


()x
+

xe


22 3x

2

+

ln


2


3













x


x


e


−+cos(x ) 32

2

e


231 xx

2

−+

3


231


212

()xx−−


1


3


2

−x


2


2

+x


dp


dV


pV nRT


nB


V


=−







1 


lim ln( ) ln( )


x


xx



−− +









lim (ln ln ) 432


x


xx




0


2


lim


x


e


x


x











0

2

1


lim


x


x


x


x


x










+−


















0


4


1


2


1


2

2

2

lim


x


x


x

















2

1


1


lim


x


x


x












1


1


2

lim


x


x


→ x

















1


3


lim


x


x


x











1


1


1


2

4.13 Exercises 123

Free download pdf