The Chemistry Maths Book, Second Edition

(Grace) #1

136 Chapter 5Integration


Figure 5.6 shows that the integrand, sin 1 x, has positive values when 01 < 1 x 1 < 1 π, and


negative values whenπ 1 < 1 x 1 < 12 π. The total ‘area under the curve’ is the sum of the two


areas labelled A


1

and A


2

in the figure, and the integral can be written as


where


This example shows that areas corresponding to negative values of the integrand


make negative contributions to the total. In this case the positive and negative


contributions cancel, and the average value of sin 1 xin the interval is zero.


0 Exercise 31


Integration of discontinuous functions


The function


is discontinuous at x 1 = 12 , but Figure 5.7 shows


that the function can be integrated across the


discontinuity if the range of integration is split at


the point of discontinuity. Thus,


This can always be done when the integrand has only a finite number of finite


discontinuities within the range of integration. A similar technique is used when the


function is continuous but has a discontinuous derivative.


=++=+=ZZ


1

2

2

3

221369 xdx ()x dx


ZZZ


1

3

1

2

2

3

fxdx fxdx fxdx() =+() ()


fx


x


x


x


x


()=











<



2


21


2


2


if


if


A x dx A x dx


1

0

2

2

==+ZZ 22 = =−


π

π

π

sin and sin


Z


0

2

12

π

sinxdx A A=+



  • 1


− 1


O π 2 π


A


1

A


2

x


si nx


........
..........

.....

...........

.

..
..
...
...
..
...
..

.
..
...
...
..
...
..

..

......

.....

.....

......

.....

......

......

.....

.....

......

.....

.....

......

......

.....

......

.....

......

......

.....

......

......

.....

.......

.....

......

.......

......

.......

.......

.........

.............

........

..............

........

........

.......

......

.......

.....

......

......

......

.....

.......

.....

.....

......

......

.....

......

.....

......

......

.....

.....

......

.....

......

.....

.....

......

......

.....

......

.....

.....

......

.....

.....

......

.....

......

.....

......

.....

......

.....

.....

......

......

.....

......

.....

......

......

.....

......

......

......

......

......

......

......

........

.......

.........

..............................

.........

.......

........

......

......

.......

.....

......

......

......

.....

......

......

.....

......

.....

......

......

.....

.....

......

.....

......

......

.....

.....

......

.....

.....

......

.....

....

Figure 5.6


2


4


6


8


0 123


..

...

..

.

..

...

..

.

..

...

..

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

...........

............

..........

...........

............

...........

...........

............

..........

...........

............

...........

...........

............

..........

...........

............

....

.....

............

...........

...........

............

..........

...........

............

...........

...........

............

..........

...........

............

...........

...........

............

.........

Figure 5.7

Free download pdf