The Chemistry Maths Book, Second Edition

(Grace) #1

146 Chapter 5Integration


The integral as a length


Lety 1 = 1 f(x)be continuous in the rangea 1 ≤ 1 x 1 ≤ 1 b, and let sbe the length of its graph


from point A, atx 1 = 1 a, to point B, atx 1 = 1 b(Figure 5.14). To calculate this length, we


divide the arc ABinto segments of length ∆s. Then, by Pythagoras’ theorem, an


approximate value of the length of the segment betweenxandx 1 + 1 ∆xis


The corresponding element of length is


(5.37)


and the total length of arc ABis


(5.38)


EXAMPLE 5.12The circumference of a circle


The equation of the circle of radius aand centre at the origin isx


2

1 + 1 y


2

1 = 1 a


2

so that


y 1 = 1 ±(a


2

1 − 1 x


2

)


122

anddy 2 dx 1 = 13 x 2 (a


2

1 − 1 x


2

)


122

. Therefore,


and the circumference of the circle is


sdxa


dx


a


aa

dy


dx


=+


















41 = 4


0

12

2

0

2

ZZ


−−x


2

11


2

2

22

2

22











=+



=



dy


dx


x


ax


a


ax


sds


dy


dx


dx


s

a

b

==+


















ZZ


0

12

2

1


ds


dy


dx


=+ dx


















12

2

1


∆∆ ∆




sx y


y


x


≈+ =+



















12

22

12

2

() () 1











∆x














A


B


a x x+∆ x b


∆ x


∆ y


∆ s


..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

...

..

...

...

...

.

................................................

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

...

..

...

...

...

..

...

...

..

...

...

..

...

...

..

...

...

..

...

...........................

.................................

..................................

............................

..........................

............................

........................

......................

........................

....................

....................

.....................

..................

.................

...................

................

................

.................

..............

...............

...............

..............

.............

..............

.............

............

..............

...........

............

............

...........

...........

............

...........

..........

...........

..........

..........

...........

.........

.........

...........

.........

.........

..........

.........

........

..........

........

.........

.........

........

........

.........

........

........

.........

.......

........

.........

.......

........

........

.......

........

........

.......

.......

........

.......

.......

........

.......

.......

.......

....

Figure 5.14

Free download pdf