6.3 The method of substitution 169
(ii).
Because , we letu 1 = 1 ln 1 xand Then
0 Exercises 17–20
EXAMPLES 6.6Integrals of type 2 :
(i)
In this case, x is proportional to the derivative of 2 x
2
1 + 1 3: f(x) 1 = 12 x
2
1 + 1 3,
f′(x) 1 = 14 x. Therefore, puttingu 1 = 12 x
2
1 + 13 anddu 1 = 14 x 1 dx,
(ii).
Letu 1 = 1 sin 1 x. Thendu 1 = 1 cos 1 x 1 dx,and
(iii)
Letu 1 = 1 ln 1 x. Then and
0 Exercises 21–26
I
du
u
==+= +Z lnuCln(ln )x C
du
x
= dx
1
,
I
xx
=Z dx
1
ln
.
I
du
u
==+=Z lnuCln(sin )x C+
Ixdx
x
x
==ZZcot dx
cos
sin
I
du
u
==+= ++uC x C
1
4
1
4
1
4
23
2
Z ln ln( )
I
x
x
= dx
Z
23
2
.
Z
fx′
fx
dx
()
()
.
IuduuC xC==+= +Z
1
2
1
2
22
(ln )
du
x
= dx
1
.
1
x
d
dx
= lnx
I
x
x
=Z dx
ln