The Chemistry Maths Book, Second Edition

(Grace) #1

6.3 The method of substitution 169


(ii).


Because , we letu 1 = 1 ln 1 xand Then


0 Exercises 17–20


EXAMPLES 6.6Integrals of type 2 :


(i)


In this case, x is proportional to the derivative of 2 x


2

1 + 1 3: f(x) 1 = 12 x


2

1 + 1 3,


f′(x) 1 = 14 x. Therefore, puttingu 1 = 12 x


2

1 + 13 anddu 1 = 14 x 1 dx,


(ii).


Letu 1 = 1 sin 1 x. Thendu 1 = 1 cos 1 x 1 dx,and


(iii)


Letu 1 = 1 ln 1 x. Then and


0 Exercises 21–26


I


du


u


==+= +Z lnuCln(ln )x C


du


x


= dx


1


,


I


xx


=Z dx


1


ln


.


I


du


u


==+=Z lnuCln(sin )x C+


Ixdx


x


x


==ZZcot dx


cos


sin


I


du


u


==+= ++uC x C


1


4


1


4


1


4


23


2

Z ln ln( )


I


x


x


= dx






Z


23


2

.


Z


fx′


fx


dx


()


()


.


IuduuC xC==+= +Z


1


2


1


2


22

(ln )


du


x


= dx


1


.


1


x


d


dx


= lnx


I


x


x


=Z dx


ln

Free download pdf