The Chemistry Maths Book, Second Edition

(Grace) #1

168 Chapter 6Methods of integration


EXAMPLE 6.4Integrate.


Letu 1 = 12 x


2

1 + 13 x 1 + 11. Thendu 1 = 1 (4x 1 + 1 3)dx,and


0 Exercises 15, 16


There are no all-embracing rules for finding the correct change of variable that will


transform an integral to standard form; proficiency in the art of integration is the


result of a lot of practice. Some of the simpler types of substitution are summarized in


Table 6.2.


Table 6.2


Type Substitution Result



  1. u 1 = 1 f(x), du 1 = 1 f′(x) 1 dx

  2. u 1 = 1 f(x), du 1 = 1 f′(x) 1 dx

  3. u 1 = 1 sin 1 x, du 1 = 1 cos 1 x 1 dx

  4. u 1 = 1 cos 1 x, du 1 = 1 −sin 1 x 1 dx


EXAMPLES 6.5Integrals of type 1 :.


(i).


In this case,cos 1 axis proportional to the derivative ofsin 1 ax(and vice versa);


f(x) 1 = 1 sin 1 ax, f′(x) 1 = 1 a 1 cos 1 ax


Therefore, puttingu 1 = 1 sin 1 ax, du 1 = 1 a 1 cos 1 ax 1 dx,


We note that this integral is identical to case 3 in Table 6.1, and this example


demonstrates that there are often several ways of evaluating a particular integral.


I


a


udu


a


uC


a


==+= +ax C


11


2


1


2


22

Z sin


Iaxaxd=Zsin cos x


Zfxf xdx() ()′


Zfxxdx()cos sin −Zfudu()


Zfudu()
Zfx xdx()sin cos

Z


du


u


Z =+lnuC


fx′


fx


dx


()


()


Zudu u C=+


1

2

2

Zfxf xdx() ()′


ZZexdxedueCe


−++xx −u −u −x

+= =−+=−


() (

()


231 2

2 2

43


+++





31 x

C


)

Zexdx


−++xx





()

()


231

2

43

Free download pdf