180 Chapter 6Methods of integration
EXAMPLE 6.17Integrate.
The integrand can be expressed in terms of partial fractions as
Therefore
EXAMPLE 6.18Integrate.
The cubic in the denominator can be factorized asx
3
1 − 13 x 1 + 121 = 1 (x 1 − 1 1)
2
(x 1 + 1 2)so that
the integrand can be expressed in terms of partial fractions as
Then
0 Exercises 63–65
Integrals of type (ii)
We first consider two special forms.
The numerator is the derivative of the quadratic
In this case, the integral is either of type 2 in Table 6.2 or it is a simple generalization
thereof:
(6.21)
ZZ
2
2
xp
xpxq
dx
fx
fx
dx
nn
++
=
′
()
()
[()]
=
−
−
−
ln +
x
xx
C
1
2
2
1
=−−
−
ln( )x −++ln( )
x
1 xC
2
1
2
ZZZZ
51
32
1
2
1
2
32
x
xx
dx
dx
x
dx
x
dx
x
−+
=
−
−
−
()
51
32
1
1
2
1
1
2
32
x
xx
x
x
x
−+
=
−
−
−
()
Z
51
32
3
x
xx
dx
−+
=− −+ −
+=
−
−
1
2
24
1
2
4
2
ln()()xxCln ln
x
x
+C
ZZ
dx
xx x x
dx
()()24
1
2
1
2
1
−− 4
=
−
−
−
1
24
1
2
1
2
1
()()−− 4
=
−
−
−
xx x x
Z
dx
()()xx
24 −−