6.6 Rational integrands. The method of partial fractions 181
Ifu 1 = 1 f(x) 1 = 1 x
2
1 + 1 px 1 + 1 qthendu 1 = 1 f′(x) 1 dx 1 = 1 (2x 1 + 1 p) 1 dx,and
(6.22)
Therefore,
(6.23)
0 Exercises 66, 67
The numerator is unity:
The integral is evaluated by first transforming the quadratic in the denominator into
the formu
2
1 + 1 a
2
. We write
(6.24)
wherep
2
1 − 14 qis the discriminant of the quadratic. Because it has been assumed that
the quadratic has no real roots, the discriminant is negative, but 4 q 1 − 1 p
2
is positive:
(6.25)
whereu 1 = 1 x 1 + 1 p 22 anda
2
1 = 1 (4q 1 − 1 p
2
) 241 > 10. Then, becausedx 1 = 1 du,
We now use the trigonometric substitution u 1 = 1 a 1 tan 1 θ. Then du 1 = 1 a 1 sec
2
1 θ 1 dθ 1 =
(a 2 cos
2
1 θ) 1 dθ,andu
2
1 + 1 a
2
1 = 1 a
2
(tan
2
1 θ 1 + 1 1) 1 = 1 a
2
2 cos
2
1 θ. Therefore
(6.26)
Whenn 1 = 11 ,
(6.27)
which is one of the standard integrals in Table 6.3. Whenn 1 > 11 , the integral (6.26) can
be evaluated, for example, by reduction as in Example 6.14.
ZZ
du
ua
a
d
a
C
a
u
a
C
22
1
11
==+=
+
−
θ
θ
tan
ZZ
du
ua a
d
nn
n
()
cos
22 21
22
1
=
−
−
θθ
ZZ
dx
xpxq
du
ua
nn
()()
222
++
=
xpxqx
pqp
ua
2
2
2
22
2
4
4
++=+
−
=+
xpxqx
ppq
2
2
2
2
4
4
++=+
−
−
Z
dx
xpxq
n
()
2
++
Z
2
1
1
1
2
2
xp
xpxq
dx
xpxqC n
n
n
++
=
+++ =
−
−
()
ln( )
()
if
(()xpxq
Cn
21 n
1
++
+>
−
if
ZZ
2
1
1
1
2
xp
xpxq
dx
du
u
uC n
nu
nn
++
==
+=
−
−
()
()
ln if
nn
Cn
−
+>
1
if 1