The Chemistry Maths Book, Second Edition

(Grace) #1

182 Chapter 6Methods of integration


EXAMPLE 6.19Integrate.


The quadratic functionx


2

1 + 12 x 1 + 15 can be written as(x 1 + 1 1)


2

1 + 12


2

. Then, by equation


(6.27), witha 1 = 12 andu 1 = 1 x 1 + 11 ,


0 Exercise 68


EXAMPLE 6.20Integrate.


By equation (6.26), withn 1 = 13 ,a 1 = 12 ,andu 1 = 1 x 1 + 11 ,


wheretan 1 θ 1 = 1 u 2 a 1 = 1 (x 1 + 1 1) 22. Then, by reduction as in Example 6.14,


We need to change variable from θback to u(and then to x). Iftan 1 θ 1 = 1 u 2 athen


θ 1 = 1 tan


− 1

1 (u 2 a)and it is readily verified that


Then


and


0 Exercise 69


Z


dx


xx


x


xx


x


() x


()


()


()


(


2322

25


1


32


21


25


31


++ 4


=






++










22

1

25


3


8


1


2
++




























x


x


C


)


tan


Zcos


()


tan


4

3

222 22

1

1


4


3


8


3


8


θθd


ua


ua


ua


ua


u


a


=



























+C


sinθθ= cos






,=






u


ua


a


ua


22 22

=+++


1


4


3


8


3


8


3

sin cosθθ θθθsin cos C


ZZcos sin cos cos


432

1


4


3


4


θθdd=+θ θ θθ


ZZ


dx


xx


d


()


cos


23

4

25


1


32


++


= θθ


Z


dx


()xx


23

++ 25


ZZ


dx


xx


dx


x


x


C


222

1

25 1 2


1


2


1


2


++


=


++


=

















()


tan


Z


dx


xx


2

++ 25

Free download pdf