The Chemistry Maths Book, Second Edition

(Grace) #1

190 Chapter 6Methods of integration
























72.If , show that (Equation (6.33))


Evaluate by means of the substitution t 1 = 1 tan 1 θ 22 :














Section 6.7


76.By differentiation of the integral


with respect to a, show that


Z


0

2

1

2
135 2 1

2



xe dx


n


a


a


nax

nn


+

=


⋅⋅()− π


Z


0

2
1

2



edx


a


−ax

=


π


Z



1 ++sin cosθθ


Z



53 − cosθ


Z



cosθ


d


t


θ= dt






2


1


2

t=tan


θ


2


Z


43


45


22

x


xx


dx






()++


Z


x


xx


dx


2

++ 45


Z


dx


()xx


22

++ 45


Z


dx


xx


2

++ 45


Z


x


xx


dx


()( )


22

++ 34


Z


x


xx


dx






++


2


45


2
Free download pdf