216 Chapter 7Sequences and series
EXAMPLE 7.14The exponential series
By Taylor’s theorem (fora 1 = 10 ),
where
for some point 01 < 1 b 1 < 1 x. Whenx 1 > 10 , the smallest and largest values ofR
n
are given
by
Then
For example, whenx 1 = 1 0.2andn 1 = 13 (and rounding all numbers to six decimal places),
the cubic approximation has value
and the error bounds are given by
0.000067 1 < 1 R
3
1 < 1 0.000067e
0.2
so that
1.221333 1 + 1 0.000067 1 < 1 e
0.2
1 < 1 1.221333 1 + 1 0.000067e
0.2
The lower bound is 1.221400. For the upper bound,
e
0.2
1 < 1 1.221333 1 + 1 0.000067e
0.2
e
0.2
1 − 1 0.000067e
0.2
1 = 1 0.999933e
0.2
1 < 1 1.221333
Therefore
e
0.2
1 < 1 1.221333 2 0.999933 1 = 1 1.221415
e
02
23
102
02
2
02
6
1 221333
.
≈+.+
.
.
=.
() ()
1
21
1
2
212
++
!
++
!
+!
<<++
!
++
+
x
xx
n
x
n
ex
xx
nn
x
n
() nn
x
n
e
n
x
!
+!
+ 1
() 1
x
n
R
x
n
e
n
n
n
x
++
+!
<<
+!
11
() () 11
R
x
n
e
n
n
b
=
+!
+ 1
() 1
ex
xx
n
Rx
x
n
n
=+ +
!
++
!
1 +
2
2
()