The Chemistry Maths Book, Second Edition

(Grace) #1

216 Chapter 7Sequences and series


EXAMPLE 7.14The exponential series


By Taylor’s theorem (fora 1 = 10 ),


where


for some point 01 < 1 b 1 < 1 x. Whenx 1 > 10 , the smallest and largest values ofR


n

are given


by


Then


For example, whenx 1 = 1 0.2andn 1 = 13 (and rounding all numbers to six decimal places),


the cubic approximation has value


and the error bounds are given by


0.000067 1 < 1 R


3

1 < 1 0.000067e


0.2

so that


1.221333 1 + 1 0.000067 1 < 1 e


0.2

1 < 1 1.221333 1 + 1 0.000067e


0.2

The lower bound is 1.221400. For the upper bound,


e


0.2

1 < 1 1.221333 1 + 1 0.000067e


0.2

e


0.2

1 − 1 0.000067e


0.2

1 = 1 0.999933e


0.2

1 < 1 1.221333


Therefore


e


0.2

1 < 1 1.221333 2 0.999933 1 = 1 1.221415


e


02

23

102


02


2


02


6


1 221333


.

≈+.+


.






.


=.


() ()


1


21


1


2


212

++


!


++


!






+!


<<++


!


++


+

x


xx


n


x


n


ex


xx


nn

x

n




() nn


x


n


e


n

x

!






+!


+ 1

() 1


x


n


R


x


n


e


n

n

n

x

++

+!


<<


+!


11

() () 11


R


x


n


e


n

n

b

=


+!


+ 1

() 1


ex


xx


n


Rx


x

n

n

=+ +


!


++


!


1 +


2


2

 ()

Free download pdf