216 Chapter 7Sequences and series
EXAMPLE 7.14The exponential series
By Taylor’s theorem (fora 1 = 10 ),
where
for some point 01 < 1 b 1 < 1 x. Whenx 1 > 10 , the smallest and largest values ofR
nare given
by
Then
For example, whenx 1 = 1 0.2andn 1 = 13 (and rounding all numbers to six decimal places),
the cubic approximation has value
and the error bounds are given by
0.000067 1 < 1 R
31 < 1 0.000067e
0.2so that
1.221333 1 + 1 0.000067 1 < 1 e
0.21 < 1 1.221333 1 + 1 0.000067e
0.2The lower bound is 1.221400. For the upper bound,
e
0.21 < 1 1.221333 1 + 1 0.000067e
0.2e
0.21 − 1 0.000067e
0.21 = 1 0.999933e
0.21 < 1 1.221333
Therefore
e
0.21 < 1 1.221333 2 0.999933 1 = 1 1.221415
e
0223102
02
2
02
6
1 221333
.≈+.+
.
.
=.
() ()
1
21
1
2
212++
!
++
!
+!
<<++
!
++
+x
xx
n
x
n
ex
xx
nnxn() nn
x
n
e
nx!
+!
+ 1() 1
x
n
R
x
n
e
nnnx+++!
<<
+!
11() () 11
R
x
n
e
nnb=
+!
+ 1() 1
ex
xx
n
Rx
xnn=+ +
!
++
!
1 +
2
2()