7.7 Approximate values and limits 217
and
1.221400 1 < 1 e
0.21 < 1 1.221415
The exact value is 1.221403.
0 Exercise 72
Limits
The MacLaurin series shows how a function behaves when the variable is very small.
Thusln(1 1 + 1 x) 1 ≈ 1 xwhen xis small enough, so that in the immediate vicinity ofx 1 = 10
the functiony 1 = 1 ln(1 1 + 1 x)can be approximated by the straight liney 1 = 1 x. Similarly,
when xis small enough,
Another way of expressing the same results is in terms of limits. Thus (Figure 7.3)
so that in the limitx 1 → 10 ,
(7.27)
Similarly,
(7.28)
More generally, the use of power series provides a systematic way of determining the
limit of the quotent of two functions,
whenf(x) 1 → 10 andg(x) 1 → 10 asx 1 → 1 a. It is not possible to substitutex 1 = 1 ain this
case because the result would be the indeterminate 0 2 0. However, if both functions
are expanded as Taylor series, by equation (7.24), we have
lim
()
xa()
fx
→ gx
lim
cos
xx
x
→−
=
0211
2
lim
sin
xx
→ x
=
01
sinx
x
xx
=−
!
!
1 −
35
24cosx
xx x
=−
!
!
1 −≈−
24
1
2
24 2sinxx
xx
=− x
!
!
−≈
3535
.........................................................................................................................................................................................1
−π
0
π
x
y
..
..............
..........
..........
.......
.......
.........................
..........
........
........
.......
.......
.......
......
.......
.......
......
.......
........
.......
.........
.....................
........
.......
.......
......
.....
......
.....
.....
......
......
.....
......
......
.....
......
.....
.....
.....
......
.....
.....
.....
......
.....
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
......
......
......
......
.....
.......
.........
..........
.........
.......
......
.....
......
......
......
......
.....
......
.....
......
.....
.....
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
......
.....
......
.....
.....
......
......
.....
.......
.......
.........
.....................
........
........
.......
.......
.......
.......
......
......
........
......
.......
........
........
..........
.........................
.......
.......
..........
..........
...............
.
y=
sin x
x
Figure 7.3