The Chemistry Maths Book, Second Edition

(Grace) #1

7.7 Approximate values and limits 217


and


1.221400 1 < 1 e


0.2

1 < 1 1.221415


The exact value is 1.221403.


0 Exercise 72


Limits


The MacLaurin series shows how a function behaves when the variable is very small.


Thusln(1 1 + 1 x) 1 ≈ 1 xwhen xis small enough, so that in the immediate vicinity ofx 1 = 10


the functiony 1 = 1 ln(1 1 + 1 x)can be approximated by the straight liney 1 = 1 x. Similarly,


when xis small enough,


Another way of expressing the same results is in terms of limits. Thus (Figure 7.3)


so that in the limitx 1 → 10 ,


(7.27)


Similarly,


(7.28)


More generally, the use of power series provides a systematic way of determining the


limit of the quotent of two functions,


whenf(x) 1 → 10 andg(x) 1 → 10 asx 1 → 1 a. It is not possible to substitutex 1 = 1 ain this


case because the result would be the indeterminate 0 2 0. However, if both functions


are expanded as Taylor series, by equation (7.24), we have


lim


()


xa()


fx


→ gx


lim


cos


x

x


x









=


0

2

11


2


lim


sin


x

x


→ x







=


0

1


sinx


x


xx


=−


!






!


1 −


35


24




cosx


xx x


=−


!






!


1 −≈−


24


1


2


24 2




sinxx


xx


=− x


!






!


−≈


35

35





..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

.

......................

1


−π


0


π


x


y


..

..............

..........

..........

.......

.......

.........................

..........

........

........

.......

.......

.......

......

.......

.......

......

.......

........

.......

.........

.....................

........

.......

.......

......

.....

......

.....

.....

......

......

.....

......

......

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

......

......

......

......

.....

.......

.........

..........

.........

.......

......

.....

......

......

......

......

.....

......

.....

......

.....

.....

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

......

.....

......

.....

.....

......

......

.....

.......

.......

.........

.....................

........

........

.......

.......

.......

.......

......

......

........

......

.......

........

........

..........

.........................

.......

.......

..........

..........

...............

.

y=


sin x


x


Figure 7.3

Free download pdf