The Chemistry Maths Book, Second Edition

(Grace) #1

8.3 Graphical representation 229


numbers, withy 1 = 10 , are represented by points on the xor real axisand pure imaginary


numbers, withx 1 = 10 , lie on the yor imaginary axis. The representation is called the


Argand diagram.


The distance of point zfrom the origin, , is called the modulusor


absolute valueof zand is written


r 1 = 1 mod 1 z 1 = 1 |z| (8.14)


Complex numbers with the same modulusr 1 = 1 |z|lie on the circle of radius rin the


plane. When|z| 1 = 11 the point lies on the unit circle.


The polar representation


The position of the pointz 1 = 1 x 1 + 1 iyin the plane can be specified in terms of the polar


coordinates rand θ, as in Figure 8.1. Then


x 1 = 1 r 1 cos 1 θ, y 1 = 1 r 1 sin 1 θ


and the complex number can be written in the polar form


z 1 = 1 r(cos 1 θ 1 + 1 i 1 sin 1 θ) (8.15)


The angle θis called the argumentor angle of z,


θ 1 = 1 arg 1 z (8.16)


The angle can have any real value but, as discussed in Chapter 3, the trigonometric


functions in (8.15) are periodic functions of θso that the number zis unchanged when


a multiple of 2 πis added to θ. A unique value can be computed from xand yby


the prescription given in Section 3.5 for the transformation from cartesian to polar


coordinates; thus, given that tan 1 θ 1 = 1 y 2 x,


if x 1 > 10


if x 1 < 10


(8.17)


in which the inverse tangent has its principal value.


=







+



tan


1

y


x


π


argz


y


x


=









tan


1

rxy=+


22

.

..

..

...

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

z=x+iy


θ


x(realaxis )


y(imaginary axis)


r






x


y


o


.

...

..

....
...
..
...
...
..
...
...
.

..
...
..
...
...
..
...
...
.

.............
.......
.......
...

....

........

.......

...

..

..

...

..

...

...

..

..

................................................................................................................

..

..

...

.

..

..

...

.

..

..

...

.

..

..

...

.

..

..

...

.

..

...

..

.

..

...

..

.

..

...

..

.

.....

.........

..........

...........

.........

..........

...........

..........

.........

...........

..........

..........

..........

..........

...........

.........

..........

...........

.........

..........

...........

.........

..........

...........

.........

..........

...........

..........

.........

...........

..........

.........

...........

..........

.........

...........

..........

.........

...........

..........

..........

..........

..........

..........

..........

..........

..........

..

Figure 8.1

Free download pdf