230 Chapter 8Complex numbers
EXAMPLES 8.5Expressz 1 = 1 x 1 + 1 iyin polar form.
(i) z 1 = 111 + 1 i
We havex 1 = 11 andy 1 = 11 so that
The principal value oftan
− 1(1) isπ 24 , andarg 1 z 1 = 1 π 24 because the point lies in
the first quadrant. Therefore
(ii)
We havex 1 = 1 − 122 and so that
The principal value of tan is π 23 and, because x 1 < 10 , it follows that
arg 1 z 1 = 1 tan. Therefore
0 Exercises 16–22
Representation of arithmetic operations
Addition and subtraction
In Figure 8.4, the numbersz
11 = 1 x
11 + 1 iy
1andz
21 = 1 x
21 + 1 iy
2are represented by points P
and Q, respectively. The representation of the sum
z
11 + 1 z
21 = 1 (x
11 + 1 x
2) 1 + 1 i(y
11 + 1 y
2)
zi=+cos sin
4
3
4
3
ππ
−()
+=
1343 ππ
−()
13
tan tan ( )
−−
=
113
y
x
r=
=
221
2
3
2
1
y=− 32
zi=− −
1
2
3
2
zi=+
2
44
cos sin
ππ
rz x y
y
x
== +=,
=
−−|| tan tan()
22 1 121
...............................................................................................................................................................z= 1 +i
θ
x
y
r
o
.........
...
..
...
...
..
...
...
...
...
..
...
...
..
...
...
.............
.......
.......
.............................................................
.......
.......
.......
.......
.......
........
.......
......
........
.......
.......
.......
.......
.......
........
......
.......
........
.......
.......
.......
.......
.......
........
......
.......
........
.......
......
........
.......
.......
.......
.......
.......
........
......
.......
........
.......
.......
.......
.......
.......
........
...
.........................................................................................................................................................................................(
−
1
2
,−
√
3
2
)
θ
x
y
r
o
.......
...
..
...
...
..
...
...
...
...
..
...
...
..
...
...
..............
.......
.......
...........................................................................
......
.....
...
...
....
..
...
...
..
...
..
...
..
...
...
..
....
...
....
........
......
.....
......
......
.....
.......
.....
......
......
......
.....
......
......
.....
.......
.....
......
......
.....
......
......
......
.....
.......
.....
......
......
.....
......
......
......
.....
.......
.....
......
......
....
Figure 8.2
Figure 8.3