232 Chapter 8Complex numbers
If the two numbers are a complex conjugate pair,z 1 = 1 x 1 + 1 iyandz* 1 = 1 x 1 − 1 iy, then
arg 1 z 1 = 1 −arg 1 z*
and
zz* 1 = 1 |z|
21 = 1 x
21 + 1 y
2,arg 1 zz* 1 = 10
In the case of division,
(8.21)
and
(8.22)
For the inverse of a complex number, it follows from (8.22) that
(8.23)
and, becausecos(−θ) 1 = 1 cos 1 θandsin(−θ) 1 = 1 −sin 1 θ,
(8.24)
EXAMPLES 8.6Express each ofz
1z
2,z
12 z
2andz
22 z
1as a single complex number
for
(see Examples 8.5)
We have r
21 = 11 ,θ
11 = 1 π 2 4,andθ
21 = 14 π 23. Therefore
(i) θ
11 + 1 θ
21 = 119 π 212 and, by equation (8.19),
zz rr i
1212 12 122
1
=+++
cos(θθ) sin(θθ) = cos
99
12
19
12
ππ
isin
rr
12=, 2
r
1=, 2
zizi
122
44
4
3
4
3
=+
cos sin ,=+cos sin
ππ π π
11
zr
=−(cosθθisin )
11
zr
=−+−i
cos( ) sin( )θθ
z
z
r
r
i
121212 12=−+−
cos(θθ) sin(θθ)
z
z
z
z
z
z
zz
12121212=,
arg =−arg() ()arg
|||*|zz xy== +,
22