The Chemistry Maths Book, Second Edition

(Grace) #1

8.5 Euler’s formula 237


This relation between the exponential function and the trigonometric functions is


called Euler’s formula.


5

It forms the basis for the unified theory of the elementary


functions, and it is one of the important relations in mathematics.


The function z 1 = 1 e



has modulus and argument


arg z 1 = 1 θ. For each value of θ, the number lies on the unit circle of the complex plane,


and as θvaries from 0 to 2 πthe function defines the unit circle (Figure 8.6). The


complex conjugate ofz 1 = 1 e



is


z* 1 = 1 e


−iθ

1 = 1 cos 1 θ 1 − 1 i 1 sin 1 θ (8.34)


and this is also the inverse,z


− 1

1 = 1 z* 1 = 1 e


−iθ

. Then


zz* 1 = 1 zz


− 1

1 = 1 e



e


−iθ

1 = 1 e


0

1 = 11


The pair of equations (8.33) and (8.34) can be inverted to


give relations for the trigonometric functions in terms of


the exponentials:


(8.35)


(8.36)


From the polar form of a complex number, equation (8.15), it now follows that every


complex number can be written as


z 1 = 1 x 1 + 1 iy 1 = 1 re



(8.37)


wherer 1 = 1 |z|andθ 1 = 1 arg 1 z. The complex conjugate and inverse functions of zare


(8.38)


EXAMPLE 8.9The numberz 1 = 111 + 1 i.


It was shown in Example 8.5 that


zi=+= +i








12


44


cos sin


ππ


zxiyre z


xiy r


e


ii

*=− = , =






=


−−θθ 1 −

11


sinθ


θθ

=−









1


2 i


ee


ii

cosθ


θθ

=+









1


2


ee


ii

|| cos sinz =+=


22

θθ 1


5

The formula, and others for the logarithmic and trigonometric functions of z, appeared in Euler’s Introductio


of 1748.


.....................
..........
......
......
......
....
....
.....
....
...
....
...
....
...
...
...
...
...
...
...
..
...
...
...
..
...
..
...
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
...
..
...
..
...
...
..
...
...
...
...
..
....
...
...
...
...
...
....
....
....
....
....
.....
.....
......
......
..........
.................
.........

.................

.........

.......

.....

......

....

.....

....

....

...

....

...

....

...

...

...

...

...

...

...

..

...

...

...

..

...

..

...

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

...

..

...

..

...

...

...

..

...

...

...

..

....

...

...

...

...

....

...

....

....

....

....

......

.....

.....

.......

..........

....................

.

..

...

..

...

...

..

...

...

...

.

...
..
...
..
...
...
...
..
....
.

o


x


y


θ


−θ


e



e


−iθ

1


1








.

.......

.........

.......

........

........

........

.......

.........

.......

.......

.........

.......

........

........

........

.......

.........

.......

.......

.........

.......

........

........

.

.......

.........

.......

........

........

........

.......

.........

.......

........

........

.......

........

........

........

.......

.........

.......

........

........

.......

........

........

..

Figure 8.6

Free download pdf