238 Chapter 8Complex numbers
The number can therefore be written as
with complex conjugate and inverse
Also,
0 Exercises 30–33
EXAMPLE 8.10Express in cartesian formx 1 + 1 iy:
(i)
(ii)e
−iπ 221 = 1 cos(−π 2 2) 1 + 1 i 1 sin(−π 2 2) 1 = 1 −i
0 Exercises 34–36
EXAMPLE 8.11The numbere
iπ.
By Euler’s formula,
e
iπ1 = 1 cos 1 π 1 + 1 i 1 sin 1 π
Becausecos 1 π 1 = 1 −1andsin 1 π 1 = 10 it follows that
e
iπ1 = 1 − 1 (8.39)
This relation, involving the transcendental numbers eand π, the negative unit − 1 ,
and the imaginary unit i, is probably the most remarkable relation in mathematics.
0 Exercises 37–39
0 Exercises 40–42
22 ei i 2123213
iπππ
3=+ 33
=+
cos sin =+ ii
cos sin
ππ
ππ ππ4
1
24
1
2
44 4=+, = −
−−ee
i
ee
ii ii 44ze i
−−i== −
141
2
1
2
44
πππ
cos sin
ze i
i*c== −ossin
−22
44
π 4ππ
ze
i= 2
π 4