240 Chapter 8Complex numbers
The coordinates of the rotated point are therefore related to the coordinates of the
unrotated point by
x′ 1 = 1 x 1 cos 1 θ 1 − 1 y 1 sin 1 θ
(8.41)
y′ 1 = 1 x 1 sin 1 θ 1 + 1 y 1 cos 1 θ
The functione
iθ
can be regarded as a representation of the rotation operatorR
θ
which transforms the coordinates(x, y)of a point zinto the coordinates(x′, y′)of
the rotated point z′:
R
θ
(x, y) 1 = 1 (x′, y′) (8.42)
Equations (8.41) play an important role in the mathematical formulation of rotations
(see Chapter 18).
0 Exercise 44
8.6 Periodicity
The trigonometric functionscos 1 θandsin 1 θare periodic functions of θwith period
2 π(see Section 3.2). It follows that the exponential functione
iθ
is also periodic with
period 2 π. Thus, if θis increased by 2 π,
e
i(θ+ 2 π)
1 = 1 e
iθ
1 × 1 e
2 πi
1 = 1 e
iθ
(cos 12 π 1 + 1 i 1 sin 12 π)
Therefore, becausecos 12 π 1 = 11 andsin 12 π 1 = 10 , it follows thate
2 πi
1 = 11 and
e
i(θ+ 2 π)
1 = 1 e
iθ
More generally, the function is unchanged when a multiple of 2 πis added to θ:
e
i(θ+ 2 πn)
1 = 1 e
iθ
, n 1 = 1 0, ±1, ±2,1= (8.43)
Graphically, changing the argumentθby 2 πncorresponds to moving the represen-
tative point on the unit circle through nfull rotations back to its original position
(nanticlockwise rotations if nis positive,|n|clockwise rotations if nis negative).
The function e
iθ
occurs in the physical sciences whenever periodic motion is
described or when a system has periodic structure. We consider here three important
representative classes of physical situations exhibiting periodic behaviour.
Periodicity on a circle. The n nth roots of 1
Figure 8.8 shows three equidistant points on the unit
circle, at the vertices of an equilateral triangle. The
points correspond to complex numbers
z
k
1 = 1 e
(2πk 2 3)i
, k 1 = 1 0, 1 1, 12
with unit modulus and arguments 2 πk 23. These
numbers have the property
()
()
ze e
k
323 ki ki
3
2
= 1
( )
==
ππ
....................
.........
.......
......
.....
.....
.....
....
....
....
...
....
...
...
...
....
..
...
...
...
...
...
..
...
...
..
...
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
...
...
...
...
...
...
...
...
....
...
....
....
....
....
.....
.....
.....
........
.......
.............
.......................
............
........
.......
......
....
.....
.....
....
....
...
....
...
...
...
....
...
...
...
..
...
...
...
..
...
...
..
...
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
...
..
...
..
...
...
..
...
...
...
..
...
...
...
...
...
...
....
...
....
....
....
....
.....
....
.....
.......
.......
.........
...................
..
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
........
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
...
......
.....
....
......
.....
....
......
.....
....
......
.....
....
......
.....
....
......
.....
....
......
.....
....
......
.....
....
......
.....
.....
.....
.....
.....
....
z
0
z
1
z
2
Figure 8.8