The Chemistry Maths Book, Second Edition

(Grace) #1

240 Chapter 8Complex numbers


The coordinates of the rotated point are therefore related to the coordinates of the


unrotated point by


x′ 1 = 1 x 1 cos 1 θ 1 − 1 y 1 sin 1 θ


(8.41)


y′ 1 = 1 x 1 sin 1 θ 1 + 1 y 1 cos 1 θ


The functione



can be regarded as a representation of the rotation operatorR


θ

which transforms the coordinates(x, y)of a point zinto the coordinates(x′, y′)of


the rotated point z′:


R


θ

(x, y) 1 = 1 (x′, y′) (8.42)


Equations (8.41) play an important role in the mathematical formulation of rotations


(see Chapter 18).


0 Exercise 44


8.6 Periodicity


The trigonometric functionscos 1 θandsin 1 θare periodic functions of θwith period


2 π(see Section 3.2). It follows that the exponential functione



is also periodic with


period 2 π. Thus, if θis increased by 2 π,


e


i(θ+ 2 π)

1 = 1 e



1 × 1 e


2 πi

1 = 1 e



(cos 12 π 1 + 1 i 1 sin 12 π)


Therefore, becausecos 12 π 1 = 11 andsin 12 π 1 = 10 , it follows thate


2 πi

1 = 11 and


e


i(θ+ 2 π)

1 = 1 e



More generally, the function is unchanged when a multiple of 2 πis added to θ:


e


i(θ+ 2 πn)

1 = 1 e



, n 1 = 1 0, ±1, ±2,1= (8.43)


Graphically, changing the argumentθby 2 πncorresponds to moving the represen-


tative point on the unit circle through nfull rotations back to its original position


(nanticlockwise rotations if nis positive,|n|clockwise rotations if nis negative).


The function e



occurs in the physical sciences whenever periodic motion is


described or when a system has periodic structure. We consider here three important


representative classes of physical situations exhibiting periodic behaviour.


Periodicity on a circle. The n nth roots of 1


Figure 8.8 shows three equidistant points on the unit


circle, at the vertices of an equilateral triangle. The


points correspond to complex numbers


z


k

1 = 1 e


(2πk 2 3)i

, k 1 = 1 0, 1 1, 12


with unit modulus and arguments 2 πk 23. These


numbers have the property


()


()

ze e


k

323 ki ki

3

2

= 1


( )


==


ππ

....................
.........
.......
......
.....
.....
.....
....
....
....
...
....
...
...
...
....
..
...
...
...
...
...
..
...
...
..
...
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
...
...
...
...
...
...
...
...
....
...
....
....
....
....
.....
.....
.....
........
.......
.............
.......................

............

........

.......

......

....

.....

.....

....

....

...

....

...

...

...

....

...

...

...

..

...

...

...

..

...

...

..

...

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

...

..

...

..

...

...

..

...

...

...

..

...

...

...

...

...

...

....

...

....

....

....

....

.....

....

.....

.......

.......

.........

...................

..

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

........
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
...

......

.....

....

......

.....

....

......

.....

....

......

.....

....

......

.....

....

......

.....

....

......

.....

....

......

.....

....

......

.....

.....

.....

.....

.....

....

z


0

z


1

z


2











Figure 8.8

Free download pdf