8.6 Periodicity 241
so that each is a cube root of the number 1:
z
0
1 = 1 e
0
1 = 11
We note thatz
1
andz
2
are a complex conjugate pair, withe
4
π
i 23
1 = 1 e
− 2
π
i 23
. Because
of the periodicity of the exponential, the three roots can be specified by any three
consecutive values of k; conveniently as
z
k
1 = 1 e
2
π
ki 23
, k 1 = 1 0, ± 1
such thatz
0
1 = 11 ,z
± 1
1 = 1 e
± 2
π
i 23
.
In general the n nth roots of the number 1 are
6
(8.44)
Thus when nis odd, the only real root is+ 1 (fork 1 = 10 ) and the rest occur as complex
conjugate pairs. When nis even, two of the roots are real,± 1 (fork 1 = 10 ,n 22 ). The n
representative points lie on the vertices of a regular n-sided polygon.
EXAMPLE 8.13The six sixth roots of 1.
The six roots are
z
k
1 = 1 e
2 πki 26
, k 1 = 1 0, ±1, ±2, 3
or z
0
1 = 1 e
0
1 = 11
z
3
1 = 1 e
πi
1 = 1 cos 1 π 1 + 1 i 1 sin 1 π 1 = 1 − 1
0 Exercises 45–47
ze i i
i
±
±
==± =−±
2
23
2
3
2
3
1
2
3
2
π
ππ
cos sin
ze i i
i
±
±
==± =±
1
3
33
1
2
3
2
π
ππ
cos sin
ze k
nn
k
ki n
==
,±,± , ,± −
,±
2
012 12
01
π
for
... () if is odd
,, ± , , ± − ,
2212 ... ()nn nif is even
ze i i
i
2
43
4
3
4
3
1
2
3
2
== + =−−
π
ππ
cos sin
ze i i
i
1
23
2
3
2
3
1
2
3
2
== + =−+
π
ππ
cos sin
6
The nth roots of a complex number were discussed by de Moivre in a Philosophical Transactionspaper of 1739.
..........
...............
........
......
......
.....
....
.....
....
....
....
...
...
....
...
...
...
...
...
...
..
...
...
...
..
...
...
..
...
..
...
...
..
..
...
..
...
...
..
..
...
...
..
...
..
...
...
..
...
...
..
...
...
...
..
...
...
...
....
...
...
....
...
....
....
....
....
......
.....
.....
........
..........
.....................................
.........
........
......
.....
.....
.....
....
....
...
....
....
...
...
...
...
...
...
...
...
...
..
...
...
...
..
...
..
...
...
..
..
...
...
..
...
..
...
..
...
..
...
..
...
...
..
...
..
...
...
..
...
...
...
...
...
...
...
...
...
....
...
....
....
....
....
.....
.....
......
......
........
...............
.........
...
..
....
..
...
...
...
...
...
...
..
....
..
...
...
...
...
...
...
..
....
..
...
...
...
...
...
...
..
....
..
. ....................... .......................................................................
..
....
..
...
...
...
...
...
...
..
....
..
...
...
...
...
...
...
..
....
..
...
...
...
...
...
...
..
....
..
....
...
...
...
...
...
..
....
..
...
...
...
...
...
...
..
...
...
...
...
...
...
...
...
..
...
...
...
...
...
...
.................................................................................................
...
...
...
...
...
...
..
...
...
...
...
...
...
...
...
..
...
...
...
...
...
...
..
....
..
...
...
...
...
...
.
z
0
z
1
z
2
z
3
z
- 2
z
- 1
Figure 8.9