242 Chapter 8Complex numbers
A function that has the same circular periodicity as the figure with nequidistant
points on a circle is
f(θ) 1 = 1 e
inθ
(8.45)
This function is periodic in θwith period 2 π 2 n. Thus
f(θ 1 + 12 π 2 n) 1 = 1 e
in(θ+ 2 π 2 n)
1 = 1 e
inθ
1 × 1 e
2 πi
1 = 1 e
inθ
1 = 1 f(θ)
Such functions are important for the description of systems with circular periodicity.
Periodicity on a line
Figure 8.10 shows a simple linear array of equidistant points representing, for example,
a linear lattice. A function of xthat has the same periodicity as the lattice must satisfy
the periodicity condition
f(x 1 + 1 a) 1 = 1 f(x) (8.46)
The simplest such function is
f(x) 1 = 1 e
2 πxi 2 a
(8.47)
Thus,
f(x 1 + 1 a) 1 = 1 e
2 π(x+a)i 2 a
1 = 1 e
2 πxi 2 a
1 × 1 e
2 πi
1 = 1 f(x)e
2 πi
1 = 1 f(x)
Functions like (8.47) are important for the description of the properties of periodic
systems such as crystals. The functions are readily generalized for three-dimensional
periodic systems: the function
f(x, y, z) 1 = 1 e
2 πxi 2 a
e
2 πyi 2 b
e
2 πzi 2 c
(8.48)
has period ain the x-direction, bin the y-direction, and cin the z-direction.
Rotation in quantum mechanics
Figure 8.11 shows a system of two masses, m
1
and m
2
,
joined by a rigid rod (of negligible mass) rotating about
the centre of mass at O. As discussed in Section 5.6
(Example 5.13) the system has moment of inertiaI 1 = 1 μr
2
where μ 1 = 1 m
1
m
2
2 (m
1
1 + 1 m
2
) is the reduced mass and
r 1 = 1 r
1
1 + 1 r
2
is the distance between the masses. Such a
.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
··· ••••••• ··· x
aaaaaa
Figure 8.10
..
...
..
...
...
..
...
...
..
....
...
...
....
....
....
....
....
.....
...
...
....
...
....
....
.....
...
o θ
m
1
m
2
r
2
r
1
...........
...
..
.
..........
..
...
.
...........
.........
..........
...........
.........
..........
...........
..........
.........
...........
..........
.........
...........
..........
.........
...........
..........
.........
...........
..........
.........
...........
..........
..........
..........
..........
..........
...........
.........
..........
...........
.........
..........
...........
.........
..........
.
Figure 8.11