The Chemistry Maths Book, Second Edition

(Grace) #1

242 Chapter 8Complex numbers


A function that has the same circular periodicity as the figure with nequidistant


points on a circle is


f(θ) 1 = 1 e


inθ

(8.45)


This function is periodic in θwith period 2 π 2 n. Thus


f(θ 1 + 12 π 2 n) 1 = 1 e


in(θ+ 2 π 2 n)

1 = 1 e


inθ

1 × 1 e


2 πi

1 = 1 e


inθ

1 = 1 f(θ)


Such functions are important for the description of systems with circular periodicity.


Periodicity on a line


Figure 8.10 shows a simple linear array of equidistant points representing, for example,


a linear lattice. A function of xthat has the same periodicity as the lattice must satisfy


the periodicity condition


f(x 1 + 1 a) 1 = 1 f(x) (8.46)


The simplest such function is


f(x) 1 = 1 e


2 πxi 2 a

(8.47)


Thus,


f(x 1 + 1 a) 1 = 1 e


2 π(x+a)i 2 a

1 = 1 e


2 πxi 2 a

1 × 1 e


2 πi

1 = 1 f(x)e


2 πi

1 = 1 f(x)


Functions like (8.47) are important for the description of the properties of periodic


systems such as crystals. The functions are readily generalized for three-dimensional


periodic systems: the function


f(x, y, z) 1 = 1 e


2 πxi 2 a

e


2 πyi 2 b

e


2 πzi 2 c

(8.48)


has period ain the x-direction, bin the y-direction, and cin the z-direction.


Rotation in quantum mechanics


Figure 8.11 shows a system of two masses, m


1

and m


2

,


joined by a rigid rod (of negligible mass) rotating about


the centre of mass at O. As discussed in Section 5.6


(Example 5.13) the system has moment of inertiaI 1 = 1 μr


2

where μ 1 = 1 m


1

m


2

2 (m


1

1 + 1 m


2

) is the reduced mass and


r 1 = 1 r


1

1 + 1 r


2

is the distance between the masses. Such a


.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
··· ••••••• ··· x

aaaaaa


Figure 8.10


..

...

..

...

...

..

...

...

..

....

...

...

....

....

....

....

....

.....

...

...
....
...
....
....
.....
...

o θ


m


1

m


2







r


2

r


1

...........
...
..
.

..........

..

...

.

...........

.........

..........

...........

.........

..........

...........

..........

.........

...........

..........

.........

...........

..........

.........

...........

..........

.........

...........

..........

.........

...........

..........

..........

..........

..........

..........

...........

.........

..........

...........

.........

..........

...........

.........

..........

.

Figure 8.11

Free download pdf