242 Chapter 8Complex numbers
A function that has the same circular periodicity as the figure with nequidistant
points on a circle is
f(θ) 1 = 1 e
inθ(8.45)
This function is periodic in θwith period 2 π 2 n. Thus
f(θ 1 + 12 π 2 n) 1 = 1 e
in(θ+ 2 π 2 n)1 = 1 e
inθ1 × 1 e
2 πi1 = 1 e
inθ1 = 1 f(θ)
Such functions are important for the description of systems with circular periodicity.
Periodicity on a line
Figure 8.10 shows a simple linear array of equidistant points representing, for example,
a linear lattice. A function of xthat has the same periodicity as the lattice must satisfy
the periodicity condition
f(x 1 + 1 a) 1 = 1 f(x) (8.46)
The simplest such function is
f(x) 1 = 1 e
2 πxi 2 a(8.47)
Thus,
f(x 1 + 1 a) 1 = 1 e
2 π(x+a)i 2 a1 = 1 e
2 πxi 2 a1 × 1 e
2 πi1 = 1 f(x)e
2 πi1 = 1 f(x)
Functions like (8.47) are important for the description of the properties of periodic
systems such as crystals. The functions are readily generalized for three-dimensional
periodic systems: the function
f(x, y, z) 1 = 1 e
2 πxi 2 ae
2 πyi 2 be
2 πzi 2 c(8.48)
has period ain the x-direction, bin the y-direction, and cin the z-direction.
Rotation in quantum mechanics
Figure 8.11 shows a system of two masses, m
1and m
2,
joined by a rigid rod (of negligible mass) rotating about
the centre of mass at O. As discussed in Section 5.6
(Example 5.13) the system has moment of inertiaI 1 = 1 μr
2where μ 1 = 1 m
1m
22 (m
11 + 1 m
2) is the reduced mass and
r 1 = 1 r
11 + 1 r
2is the distance between the masses. Such a
.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
··· ••••••• ··· xaaaaaa
Figure 8.10
................................................................
....
...
....
....
.....
...o θ
m
1m
2r
2r
1...........
...
..
............................
.........
..........
...........
.........
..........
...........
..........
.........
...........
..........
.........
...........
..........
.........
...........
..........
.........
...........
..........
.........
...........
..........
..........
..........
..........
..........
...........
.........
..........
...........
.........
..........
...........
.........
..........
.
Figure 8.11