The Chemistry Maths Book, Second Edition

(Grace) #1

8.5 Exercises 245


The integralIis the real part of this:


(8.55)


The imaginary part is a bonus:


(8.56)


0 Exercises 49, 50


8.8 Exercises


Section 8.2


Express as a single complex number:


1.(2 1 + 13 i) 1 + 1 (4 1 − 15 i) 2.(2 1 + 13 i) 1 + 1 (2 1 − 13 i) 3.(2 1 + 13 i) 1 − 1 (2 1 − 13 i) 4.(5 1 + 13 i)(3 1 − 1 i)


5.(1 1 − 13 i)


2

6.(1 1 + 12 i)


5

7.(1 1 − 13 i)(1 1 + 13 i)


8.Ifz 1 = 131 − 12 i, find (i)zand (ii)zz. (iii)Express the real and imaginary parts of zin terms


of zandz*.


9.Find zsuch thatzz 1 + 1 4(z 1 − 1 z) 1 = 151 + 116 i.


Solve the equations:


10.z


2

1 − 12 z 1 + 141 = 10 11.z


3

1 + 181 = 10


Express as a single complex number:


















Section 8.3


(i)Plot as a point in the complex plane, (ii)find the modulus and argument, (iii)Express in


polar formr(cos 1 θ 1 + 1 i 1 sin 1 θ):



  1. 2 i 17.− 3 18. 11 − 1 i 19. 20.− 61 + 16 i 21.

  2. 12 i


Givenz


1

andz


2

, express (i)z


1

z


2

, (ii)z


1

2 z


2

, (iii)z


2

2 z


1

as a single complex number for










25.For find (i)z


4

, (ii)z


− 4

.


26.Use de Moivre’s formula to show that


(i)cos 14 θ 1 = 1 cos


4

1 θ 11 − 161 cos


2

1 θ 1 sin


2

1 θ 1 + 1 sin


4

1 θ


(ii)sin 14 θ 1 = 141 sin 1 θ 1 cos 1 θ(cos


2

1 θ 1 − 1 sin


2

1 θ)


27.Use de Moivre’s formula to expandcos 18 xas a polynomial incos 1 x.


zi=+








3


88


cos sin


ππ


zizi


12

5


3


4


3


4


2


3


2


3


=+








cos sin ,=cos +sin


ππ π π


zizi


12

2


22


3


33


=+








,= +






cos sin cos sin


ππ ππ






3 +i −− 212 i


1


5


34


34








i


i


32


32







i


i


1


53 + i


1


1







i


i


Zebxdx


ea bxb bx


ab


ax

ax

sin


(sin cos )


=







22

Zebxdx


ea bxb bx


ab


ax

ax

cos


(cos sin )


=










22
Free download pdf