422 Chapter 15Orthogonal expansions. Fourier analysis
EXAMPLE 15.2Derive the expansion (15.22).
We treat the function to be expanded as a function of t, and expand it as a MacLaurin
series. We have
f(t) = 1 (1 1 − 12 xt 1 + 1 t
2
)
− 122
f(0) = 11
f′(t)= 1 (x 1 − 1 t) (1 1 − 12 xt 1 + 1 t
2
)
− 322
f′(0)= 1 x
f′′(t) 1 = 1 3(x 1 − 1 t)
2
(1 1 − 12 xt 1 + 1 t
2
)
− 522
1 − 1 (1 1 − 12 xt 1 + 1 t
2
)
− 322
f′′(0) 1 = 13 x
2
1 − 11
and similarly,f′′′(0) 1 = 115 x
3
1 − 19 x,f′′′′(0) 1 = 1105 x
4
1 − 190 x
2
1 + 19 , and so on.
Comparison with the Legendre polynomials listed in (15.4) shows that, for the lth
derivative,f
(l)
(0) 1 = 1 l!P
l
(x). The MacLaurin series
f′′′′(0) 1 +1-
is then
f(t) 1 = 1 (1 1 − 12 xt 1 + 1 t
2
)
− 122
1 = 1 P
0
1 + 1 tP
1
(x) 1 + 1 t
2
P
2
(x) 1 + 1 t
3
P
3
(x) 1 + 1 t
4
P
4
(x) 1 +1-
and this is equation (15.22).
EXAMPLE 15.3Find the first term in the expansion (15.23).
If then. Therefore
It follows from equations (13.55) and (13.59) for Bessel functions of half-integral
order that
0 Exercises 3, 4
The expansion of electrostatic potential
The potential of a single charge
The electrostatic potential at point P due to the presence of a
point charge qis (see Figure 15.1)
V (15.24)
q
R
q
=
4
0
πε
c
t
Jtjt
0120
2
==
/
π
() ()
cedx
e
it i
itx
itx
0
1
1
1
1
1
2
1
2
1
2
==
=
−
+
−
+
Z
tt
ee
t
t
it it
−
=
−
−
+
1
1
1
sin
c
l
Pxe dx
ll
itx
=
−
+
21
2
1
1
Z ()
ecPx
itx
l
ll
=
=
∑
0
∞
()
ft f tf
t
f
t
f
t
() () ()=+′ + () ()
!
′′ +
!
00 ′′′ +
2
0
3
0
4
23 4
!!
.
...
...
...
...
..
...
...
...
...
...
..
...
...
...
..
...
...
...
...
..
...
...
...
...
...
..
...
...
...
..
...
...
...
...
..
...
...
...
...
...
..
...
...............
............
.............
.............
.............
............
..............
............
............
.....
.....
......
.....
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
..
o
q
p
r
R
R
q
..
...
...
...
....
....
.....
θ
Figure 15.1