422 Chapter 15Orthogonal expansions. Fourier analysis
EXAMPLE 15.2Derive the expansion (15.22).
We treat the function to be expanded as a function of t, and expand it as a MacLaurin
series. We have
f(t) = 1 (1 1 − 12 xt 1 + 1 t
2)
− 122f(0) = 11
f′(t)= 1 (x 1 − 1 t) (1 1 − 12 xt 1 + 1 t
2)
− 322f′(0)= 1 x
f′′(t) 1 = 1 3(x 1 − 1 t)
2(1 1 − 12 xt 1 + 1 t
2)
− 5221 − 1 (1 1 − 12 xt 1 + 1 t
2)
− 322f′′(0) 1 = 13 x
21 − 11
and similarly,f′′′(0) 1 = 115 x
31 − 19 x,f′′′′(0) 1 = 1105 x
41 − 190 x
21 + 19 , and so on.
Comparison with the Legendre polynomials listed in (15.4) shows that, for the lth
derivative,f
(l)(0) 1 = 1 l!P
l(x). The MacLaurin series
f′′′′(0) 1 +1-
is then
f(t) 1 = 1 (1 1 − 12 xt 1 + 1 t
2)
− 1221 = 1 P
01 + 1 tP
1(x) 1 + 1 t
2P
2(x) 1 + 1 t
3P
3(x) 1 + 1 t
4P
4(x) 1 +1-
and this is equation (15.22).
EXAMPLE 15.3Find the first term in the expansion (15.23).
If then. Therefore
It follows from equations (13.55) and (13.59) for Bessel functions of half-integral
order that
0 Exercises 3, 4
The expansion of electrostatic potential
The potential of a single charge
The electrostatic potential at point P due to the presence of a
point charge qis (see Figure 15.1)
V (15.24)
q
R
q=
4
0πε
c
t
Jtjt
01202
==
/π
() ()
cedx
e
it i
itxitx011111
2
1
2
1
2
==
=
−+−+Z
tt
ee
t
t
it it−
=
−−+111
sin
c
l
Pxe dx
llitx=
−+21
2
11Z ()
ecPx
itxlll=
=∑
0∞()
ft f tf
t
f
t
f
t
() () ()=+′ + () ()
!
′′ +
!
00 ′′′ +
2
0
3
0
4
23 4!!
......................................................................................................................................
............
.............
.............
.............
............
..............
............
............
.....
.....
......
.....
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
..o
q
p
r
R
R
q........................
θFigure 15.1