The Chemistry Maths Book, Second Edition

(Grace) #1

422 Chapter 15Orthogonal expansions. Fourier analysis


EXAMPLE 15.2Derive the expansion (15.22).


We treat the function to be expanded as a function of t, and expand it as a MacLaurin


series. We have


f(t) = 1 (1 1 − 12 xt 1 + 1 t


2

)


− 122

f(0) = 11


f′(t)= 1 (x 1 − 1 t) (1 1 − 12 xt 1 + 1 t


2

)


− 322

f′(0)= 1 x


f′′(t) 1 = 1 3(x 1 − 1 t)


2

(1 1 − 12 xt 1 + 1 t


2

)


− 522

1 − 1 (1 1 − 12 xt 1 + 1 t


2

)


− 322

f′′(0) 1 = 13 x


2

1 − 11


and similarly,f′′′(0) 1 = 115 x


3

1 − 19 x,f′′′′(0) 1 = 1105 x


4

1 − 190 x


2

1 + 19 , and so on.


Comparison with the Legendre polynomials listed in (15.4) shows that, for the lth


derivative,f


(l)

(0) 1 = 1 l!P


l

(x). The MacLaurin series


f′′′′(0) 1 +1-


is then


f(t) 1 = 1 (1 1 − 12 xt 1 + 1 t


2

)


− 122

1 = 1 P


0

1 + 1 tP


1

(x) 1 + 1 t


2

P


2

(x) 1 + 1 t


3

P


3

(x) 1 + 1 t


4

P


4

(x) 1 +1-


and this is equation (15.22).


EXAMPLE 15.3Find the first term in the expansion (15.23).


If then. Therefore


It follows from equations (13.55) and (13.59) for Bessel functions of half-integral


order that


0 Exercises 3, 4


The expansion of electrostatic potential


The potential of a single charge


The electrostatic potential at point P due to the presence of a


point charge qis (see Figure 15.1)


V (15.24)


q


R


q

=


4


0

πε


c


t


Jtjt


0120

2


==


/

π


() ()


cedx


e


it i


itx

itx

0

1

1

1

1

1


2


1


2


1


2


==












=



+


+

Z


tt


ee


t


t


it it








=




+

1

1

1


sin


c


l


Pxe dx


ll

itx

=







+

21


2


1

1

Z ()


ecPx


itx

l

ll

=


=


0


()


ft f tf


t


f


t


f


t


() () ()=+′ + () ()


!


′′ +


!


00 ′′′ +


2


0


3


0


4


23 4

!!


.

...

...

...

...

..

...

...

...

...

...

..

...

...

...

..

...

...

...

...

..

...

...

...

...

...

..

...

...

...

..

...

...

...

...

..

...

...

...

...

...

..

...

...............
............
.............
.............
.............
............
..............
............
............
.....
.....
......
.....
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
..













o


q


p


r


R


R
q

..

...

...

...

....

....

.....
θ

Figure 15.1

Free download pdf