The Chemistry Maths Book, Second Edition

(Grace) #1

15.3 Two expansions in Legendre polynomials 423


whereR


q

is the distance of point Pfrom the charge (if a chargeq′is placed at P, the


potential energy of the system of two charges isVq′ 1 = 1 qq′ 24 πε


0

R


q

). By the cosine rule


for the triangle OPq, we haveR


2

q

1 = 1 r


2

1 + 1 R


2

1 − 12 r 1 R 1 cos 1 θ, so that (15.24) can be written as


(15.25)


We consider the caseR 1 > 1 r. We write (15.25) as


and, by equation (15.22) witht 1 = 1 r 2 Randx 1 = 1 cos 1 θ, this can be expanded in Legendre


polynomials as


(15.26)


Whenr 1 > 1 R, the same expansion is valid, but with rand Rinterchanged.


The potential of a distribution of charges


We consider a system of Ncharges,


q


1

at (x


1

, y


1

, z


1

), q


2

at (x


2

, y


2

, z


2

), =,q


n

at (x


n

,y


n

,z


n

)


as illustrated in Figure 15.2 (for 2 charges).


Each charge makes its individual contribution


to the electrostatic potential at point P, and the total


potential at P is the sum of these contributions,


(15.27)


If the point P is exteriorto the distribution of


charges, so thatR 1 > 1 r


i

, for alli, the potential can be


expanded term by term as in (15.26):


(15.28)


=










=

+

=

∑∑


1


4


1


0

0

1

1

πε


θ


l

l

i

N

ii

l

li

R


qr P



(cos )


V


q


R


r


R


P


i

N

i

l

l

i

li

=










==

∑∑


1
0

0

4 πε


θ



(cos )


V


q


R


i

N

i

i

=


=


1 0

4 πε


V


q


R


r


R


P


r


R


l

l

l

=







 ,<


=


4


1


0

0

πε


θ



(cos )


V


q


R


r


R


r


R


=−
























−/

4


12


0

12

2

πε


cosθ








V


q


=− +RrR r


−/

4


2


0

2212

πε


(cos)θ


.

...

...

..

...

...

...

...

..

...

...

...

...

...

..

...

...

...

...

..

...

...

...

..

...

...

...

...

..

...

...

...

...

...

..

...

...

...

..

...

...

...

...

..

...

...

...

..

...

...

...

...

...

..

...

...

...

...

......
.............
.............
............
..............
............
............
..............
............
............
..............
............
........
.....
......
.....
.....
......
.....
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
.....
......
.....
.....
......
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
........................................................................................................................................................................................................................................................

...

..

...

..

...

..

...

...

..

...

..

...

...

..

...

..

...

...

..

...

..

...

..

...

...

..

...

..

...

...

..

...

..

...

..

...

...

..

...

..

...

...

..

...

..

...

















o


q
1

q
2

p


r
1

r
2

R


R
1

R
2

...

...

...

....

...

....

....

.....

..θ
1

.

...

..

..

...

...

..

...

...

..

...

..

θ
2

Figure 15.2

Free download pdf