15.3 Two expansions in Legendre polynomials 423
whereR
q
is the distance of point Pfrom the charge (if a chargeq′is placed at P, the
potential energy of the system of two charges isVq′ 1 = 1 qq′ 24 πε
0
R
q
). By the cosine rule
for the triangle OPq, we haveR
2
q
1 = 1 r
2
1 + 1 R
2
1 − 12 r 1 R 1 cos 1 θ, so that (15.24) can be written as
(15.25)
We consider the caseR 1 > 1 r. We write (15.25) as
and, by equation (15.22) witht 1 = 1 r 2 Randx 1 = 1 cos 1 θ, this can be expanded in Legendre
polynomials as
(15.26)
Whenr 1 > 1 R, the same expansion is valid, but with rand Rinterchanged.
The potential of a distribution of charges
We consider a system of Ncharges,
q
1
at (x
1
, y
1
, z
1
), q
2
at (x
2
, y
2
, z
2
), =,q
n
at (x
n
,y
n
,z
n
)
as illustrated in Figure 15.2 (for 2 charges).
Each charge makes its individual contribution
to the electrostatic potential at point P, and the total
potential at P is the sum of these contributions,
(15.27)
If the point P is exteriorto the distribution of
charges, so thatR 1 > 1 r
i
, for alli, the potential can be
expanded term by term as in (15.26):
(15.28)
=
=
+
=
∑∑
1
4
1
0
0
1
1
πε
θ
l
l
i
N
ii
l
li
R
qr P
∞
(cos )
V
q
R
r
R
P
i
N
i
l
l
i
li
=
==
∑∑
1
0
0
4 πε
θ
∞
(cos )
V
q
R
i
N
i
i
=
=
∑
1 0
4 πε
V
q
R
r
R
P
r
R
l
l
l
=
,<
=
∑
4
1
0
0
πε
θ
∞
(cos )
V
q
R
r
R
r
R
=−
−/
4
12
0
12
2
πε
cosθ
V
q
=− +RrR r
−/
4
2
0
2212
πε
(cos)θ
.
...
...
..
...
...
...
...
..
...
...
...
...
...
..
...
...
...
...
..
...
...
...
..
...
...
...
...
..
...
...
...
...
...
..
...
...
...
..
...
...
...
...
..
...
...
...
..
...
...
...
...
...
..
...
...
...
...
......
.............
.............
............
..............
............
............
..............
............
............
..............
............
........
.....
......
.....
.....
......
.....
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
.....
......
.....
.....
......
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
........................................................................................................................................................................................................................................................
...
..
...
..
...
..
...
...
..
...
..
...
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
..
...
...
..
...
..
...
o
q
1
q
2
p
r
1
r
2
R
R
1
R
2
...
...
...
....
...
....
....
.....
..θ
1
.
...
..
..
...
...
..
...
...
..
...
..
θ
2
Figure 15.2