15.3 Two expansions in Legendre polynomials 423
whereR
qis the distance of point Pfrom the charge (if a chargeq′is placed at P, the
potential energy of the system of two charges isVq′ 1 = 1 qq′ 24 πε
0R
q). By the cosine rule
for the triangle OPq, we haveR
2q1 = 1 r
21 + 1 R
21 − 12 r 1 R 1 cos 1 θ, so that (15.24) can be written as
(15.25)
We consider the caseR 1 > 1 r. We write (15.25) as
and, by equation (15.22) witht 1 = 1 r 2 Randx 1 = 1 cos 1 θ, this can be expanded in Legendre
polynomials as
(15.26)
Whenr 1 > 1 R, the same expansion is valid, but with rand Rinterchanged.
The potential of a distribution of charges
We consider a system of Ncharges,
q
1at (x
1, y
1, z
1), q
2at (x
2, y
2, z
2), =,q
nat (x
n,y
n,z
n)
as illustrated in Figure 15.2 (for 2 charges).
Each charge makes its individual contribution
to the electrostatic potential at point P, and the total
potential at P is the sum of these contributions,
(15.27)
If the point P is exteriorto the distribution of
charges, so thatR 1 > 1 r
i, for alli, the potential can be
expanded term by term as in (15.26):
(15.28)
=
=+=∑∑
1
4
1
0011πε
θ
lliNiilliR
qr P
∞(cos )
V
q
R
r
R
P
iNillili=
==∑∑
1
004 πε
θ
∞(cos )
V
q
R
iNii=
=∑
1 04 πε
V
q
R
r
R
P
r
R
lll=
,<
=∑
4
1
00πε
θ
∞(cos )
V
q
R
r
R
r
R
=−
−/4
12
0122πε
cosθ
V
q
=− +RrR r
−/4
2
02212πε
(cos)θ
.......................................................................................................................................................................
.............
.............
............
..............
............
............
..............
............
............
..............
............
........
.....
......
.....
.....
......
.....
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
.....
......
.....
.....
......
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
...............................................................................................................................................................................................................................................................................................................................................................................o
q
1q
2p
r
1r
2R
R
1R
2...............................θ
1.............................θ
2Figure 15.2