15.4 Fourier series 427
Figure 15.4
Figure 15.5
Form 1 = 1 n 1 > 10 ,
0 Exercise 7
Periodicity
The trigonometric functions (15.31) are periodic functions of xwith period 2 π
and, therefore, every linear combination of them is also periodic. This means that the
functionf(x)can be extended to values outside the base interval−π 1 ≤ 1 x 1 ≤ 1 πby means
of the periodicity relation
f(x 1 + 12 π) 1 = 1 f(x) (15.40)
For example, the function
(15.41)
shown in Figure 15.4 can be extended by means of (15.40) to give the periodic
function shown in Figure 15.5.
Periodic functions occur in the mathematical modelling of physical systems that
exhibit periodic phenomena. For example, the function shown in Figure 15.5, with
f(x)as current and xas time, might represent the result of passing an alternating
electric current through a rectifier that allows current to flow in one direction only (a
half-wave rectifier). Despite the discontinuities (of the gradient) exhibited by the
function, it is one of an important class of functions that can be represented as Fourier
series. An example of such a function is discussed in Example 15.6.
In general, a function that satisfies the periodicity relation (15.40) can be expanded
as a Fourier series if it is single-valued and piecewise continuous; that is, continuous
except for a finite number of finite discontinuities and only a finite number of
maxima and minima in any finite interval (that is, every reasonably well-behaved
function).
fx
xx
x
()
sin
=
,≤≤
−≤ ≤
for
for
0
00
π
π
ZZ
−
+
−
+
−
+
=+ =+
π
π
π
π
π
π
cos ( cos )
s
2
1
2
12
1
2
nx dx nx dx x
iin2
2
nx
n
=π
- 1
−π +π
...................................................................................................................................................................................................
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
......
.....
......
.....
.....
......
.....
......
......
.....
......
......
......
.....
.......
......
......
........
........
............
.........
.............
........
.......
......
......
.......
......
.....
.......
.....
.....
......
......
.....
......
.....
......
......
.....
.....
......
.....
.....
......
.....
......
.....
.....
......
.....
......
....
0
x
f(x)
- 1
− 3 π − 2 π −π +π 2 π 3 π
0
x
f(x)
.
..
..
...
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
........................................................................................................................................................................................................................................................................................................................................................................................................ ...................................................................................................................................................................................................
.....
.....
......
.....
.....
......
.....
......
.....
......
.....
......
.....
.....
......
.....
......
......
.....
.....
......
......
.....
.......
.....
......
.......
......
......
........
.........
.........................
.........
........
.......
......
......
......
......
......
......
.....
......
.....
......
......
.....
.....
......
.....
......
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
.. .....
.....
.....
......
.....
.....
......
.....
......
.....
......
.....
......
.....
.....
......
.....
......
......
.....
.....
......
......
.....
.......
.....
......
.......
......
......
........
.........
.........................
.........
........
.......
......
......
......
......
......
......
.....
......
.....
......
......
.....
.....
......
.....
......
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
..... ..
.....
.....
......
.....
.....
......
.....
......
.....
......
.....
......
.....
.....
......
.....
......
......
.....
.....
......
......
.....
.......
.....
......
.......
......
......
........
.........
.........................
.........
........
.......
......
......
......
......
......
......
.....
......
.....
......
......
.....
.....
......
.....
......
......
.....
.....
......
.....
.....
.....
......
.....
......
.....
.....
..