The Chemistry Maths Book, Second Edition

(Grace) #1

428 Chapter 15Orthogonal expansions. Fourier analysis


EXAMPLE 15.6The Fourier series of the function


(15.42)


The graph of the (extended) function, Figure 15.6, shows that the function is


discontinuous when xis a multiple of π, and the function can therefore be expanded


as the Fourier series (15.37),


everywhere other than at these points of discontinuity. It is a property of Fourier


series that the value of the series at a point of discontinuity is the mean value of the


function at the point. In the present case, this mean value is 1 2 2.


The coefficienta


0

. By equation (15.38) withn 1 = 1 0,


The functionf(x)is equal to zero in the first integral on the right, and is equal to


unity in the second. Therefore,


(15.43)


The coefficientsa


n

, n 1 > 10. By equation (15.38),


(15.44)


All the Fourier coefficientsa


n

are zero except fora


0

1 = 11.


a f x nxdx nxdx


n

===



++

111


0
0

πππ


π

ππ

π

ZZ()cos cos


sinnnx


n










= 0


adx


0

0

1


== 1


+

π


π

Z


a fxdx fxdx fxdx


0

0

0

111


==+



+


+

πππ


π

π

π

π

ZZZ() () ()


fx


a


anxbnx


n

nn

()=+( cos +sin )


=


0

1

2



fx


x


x


()=


,<<


,−<<







10


00


for


for


π


π



  • 1


− 3 π − 2 π −π +π 2 π 3 π


0


x


f(x)


.

..

..

...

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

..

................................................................................................................................................................................................................................................................................................................................................................................................. ...............................................................................................................................................................................................


................................................................................................................................................................................................ ..................................................................................................................................................................................................................................................................................................................................................................................................


Figure 15.6

Free download pdf