The Chemistry Maths Book, Second Edition

(Grace) #1

15.4 Fourier series 431


The following example demonstrates the Fourier series for an arbitrary period, and it


also prepares the ground for the completion of the solution of the wave equation for


the vibrating string discussed in Section 14.7.


EXAMPLE 15.7The Fourier series of the function


(15.51)


Figure 15.9 shows that the function is an oddfunction


of x, withf(−x) 1 = 1 −f(x). It follows from the discussion of


even and odd functions in Section 5.3 that an integral


is zero unless g(x)is also an odd function of x, or


if it contains an odd component. Of the expansion


functions in (15.48), the sine functions are odd but the


cosine functions are even. All the integrals (15.49) fora


n

are therefore zero, and the


Fourier series reduces to the Fourier sine series for the expansion of an odd function:


(15.52)


with coefficients given by (15.50). It also follows from the discussion of Section 5.3,


equation (5.25), that the integral (15.50) over the whole interval−l 1 ≤ 1 x 1 ≤ 1 lis equal to


twice the integral over the half-interval 01 ≤ 1 x 1 ≤ 1 l:


(15.53)


For the function (15.51), we then have


=+−





4


2

0

2

2

A


l


x


nx


l


dx l x


nx


l


dx


l

l

l

ZZ


/

/

sin ( ) sin


ππ











b


l


fx


nx


l


dx f x


nx


l


dx


n

l

l

l

=+



2


0

2

2

ZZ


/

/

()sin ()sin


ππ













b


l


fx


nx


l


dx


n

l

=


+

2


0

Z ()sin


π


fx b


nx


l


n

n

()= sin


=


1


π


Z



+

l

l

fxgxdx()()


fx


A


l


lx lx


Ax


l


() x


()


=


−+ −≤≤−


−≤


21


2


21


2


for


for ≤≤+


−+≤≤+













1


2


21


2


A


l


() forlx x l


+A


−A


+l


−l


......

.....

......

......

......

.....

.......

.....

......

......

......

.....

.......

.....

......

......

......

.....

.......

.....

......

......

......

.....

.......

.....

......

......

......

.....

.......

.....

........

.....

.......

.....

......

......

......

.....

.......

.....

......

......

......

.....

.......

.....

......

......

......

......

......

.....

......

......

......

......

......

......

.....

......

......

......

......

......

.....

.......

.....

......

......

......

.....

.......

.....

......

......

......

.....

.......

.....

......

......

......

......

......

.....

......

......

......

......

......

......

.....

.......

.....

......

....

......

.....

.......

.....

......

......

......

.....

.......

.....

......

......

......

.....

.......

.....

......

......

......

.....

.......

.....

......

......

......

.....

.......

.....

......

......

......

.....

..

0


x


f(x)


Figure 15.9

Free download pdf