15.4 Fourier series 431
The following example demonstrates the Fourier series for an arbitrary period, and it
also prepares the ground for the completion of the solution of the wave equation for
the vibrating string discussed in Section 14.7.
EXAMPLE 15.7The Fourier series of the function
(15.51)
Figure 15.9 shows that the function is an oddfunction
of x, withf(−x) 1 = 1 −f(x). It follows from the discussion of
even and odd functions in Section 5.3 that an integral
is zero unless g(x)is also an odd function of x, or
if it contains an odd component. Of the expansion
functions in (15.48), the sine functions are odd but the
cosine functions are even. All the integrals (15.49) fora
n
are therefore zero, and the
Fourier series reduces to the Fourier sine series for the expansion of an odd function:
(15.52)
with coefficients given by (15.50). It also follows from the discussion of Section 5.3,
equation (5.25), that the integral (15.50) over the whole interval−l 1 ≤ 1 x 1 ≤ 1 lis equal to
twice the integral over the half-interval 01 ≤ 1 x 1 ≤ 1 l:
(15.53)
For the function (15.51), we then have
=+−
4
2
0
2
2
A
l
x
nx
l
dx l x
nx
l
dx
l
l
l
ZZ
/
/
sin ( ) sin
ππ
b
l
fx
nx
l
dx f x
nx
l
dx
n
l
l
l
=+
2
0
2
2
ZZ
/
/
()sin ()sin
ππ
b
l
fx
nx
l
dx
n
l
=
+
2
0
Z ()sin
π
fx b
nx
l
n
n
()= sin
=
∑
1
∞
π
Z
−
+
l
l
fxgxdx()()
fx
A
l
lx lx
Ax
l
() x
()
=
−+ −≤≤−
−≤
21
2
21
2
for
for ≤≤+
−+≤≤+
1
2
21
2
A
l
() forlx x l
+A
−A
+l
−l
......
.....
......
......
......
.....
.......
.....
......
......
......
.....
.......
.....
......
......
......
.....
.......
.....
......
......
......
.....
.......
.....
......
......
......
.....
.......
.....
........
.....
.......
.....
......
......
......
.....
.......
.....
......
......
......
.....
.......
.....
......
......
......
......
......
.....
......
......
......
......
......
......
.....
......
......
......
......
......
.....
.......
.....
......
......
......
.....
.......
.....
......
......
......
.....
.......
.....
......
......
......
......
......
.....
......
......
......
......
......
......
.....
.......
.....
......
....
......
.....
.......
.....
......
......
......
.....
.......
.....
......
......
......
.....
.......
.....
......
......
......
.....
.......
.....
......
......
......
.....
.......
.....
......
......
......
.....
..
0
x
f(x)
Figure 15.9