The Chemistry Maths Book, Second Edition

(Grace) #1

432 Chapter 15Orthogonal expansions. Fourier analysis


and, after integration by parts,


(15.54)


Therefore


(15.55)


0 Exercise 12, 13


15.5 The vibrating string


It was shown in Section 14.7 that the solution of the wave equation for the vibrating


string of length lis (equation (14.103))


(15.56)


in which the coefficientsA


n

andB


n

are determined by the initial conditions (equations


(14.104))


(15.57)


where f(x) and g(x) are given displacement and


velocity functions that describe the state of the system


at timet 1 = 10.


We suppose that, att 1 = 10 , we pull the string side-


ways at its centre, and then let go. The initial shape of


the string is shown in Figure 15.10, and the displace-


ment function is therefore identical to the function


discussed in Example 15.7, except that it is defined


only within the half-interval 01 ≤ 1 x 1 ≤ 1 l. The Fourier representation of the function is


then given by equation (15.55):


yx f x (15.58)


Ax


l


x


l


( ) ( ),= 0 = sin −sin +sin


81


1


1


3


31


5


22 2 2

π


ππ 55 πx


l














t

n

nn

y


t


gx B


nx


l


=

=









==



0

1

() sin



ω


π


yx f x A


nx


l


n

n

() (),= = sin


=


0


1


π


yxt


nx


l


AtBt


n

nnnn

( ),=sin cos +sin








=


1


π


ωω


fx


Ax


l


x


l


x


l


( )=sin −+−sin sin



81


1


1


3


31


5


5


22 2 2

π


πππ














b


n


A


n


n


A


n


n


n

=+ =,,,,


−=


0


8


15913


8


22

22

if even


if


if


π


π


...


3 3 7 11 15,, , ,













...


A


0 l


x


f(x)





.....

........

........

.......

........

........

.......

.........

.......

........

........

........

.......

........

........

.......

.........

.......

........

........

........

.......

........

........

.......

.........

.......

........

........

........

.......

........

..............

........

........

.......

........

........

.......

.........

.......

........

........

........

.......

.........

.......

........

........

........

.......

.........

.......

........

........

........

.......

........

........

.......

.........

.......

........

........

.....

Figure 15.10

Free download pdf